Skip to main content

Enhancement of Local Drug Delivery System Using Different Design of Gentamicin Loaded in Carbonate Apatite Scaffold

  • Chapter
  • First Online:
Biocomposite Materials

Part of the book series: Composites Science and Technology ((CST))

Abstract

A combination of bioactive scaffold with drug delivery of therapeutic agents is a great deal to locally treat bone infections. However, controllable drug release behaviours for different types of drug-incorporated scaffold have been not comprehensively compared. In this study, novel technique was proposed with the addition of bioactive agents in microspheres was incorporated into carbonate apatite (CO3Ap) scaffold. A simple slurry-dipping method by dispersion of 0.8 wt% suspension of gentamicin (GEN)-loaded polylactic acid (PLA) microsphere (GENMS) using an ultrasonic bath was used to coat the scaffold. GENMS was fabricated by double emulsion. This coated scaffold was compared to the GEN coated scaffold without microsphere and uncoated scaffold with direct loading of GEN. It was confirmed that the microsphere coating did not inhibit the apatite growth of the scaffold when immersed in Hank’s Balance Salt Solution for 4 weeks. The drug release profile exhibited the initial burst and sustained drug release could be improved by the presence of GENMS in the coated scaffold. Moreover, the kinetic release study supported the findings of different drug release based on zero-order, first-order, Higuchi and Korsmeyer–Peppas models. The results showed that drug release mechanisms were diffusion and degradation controlled for scaffold, while for coated scaffolds led to diffusion and degradation of chitosan and microsphere. Rougher surface of the scaffold by the adhered GENMS on the scaffold facilitated cell proliferation. In short, this multifunctional coated bioactive scaffold has the potential to enhance cell attachment and provide local of controlled drug delivery for bone tissue engineering improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mamat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mamat, N., Mariatti, M., Hamid, Z.A.A., Yahaya, B.H. (2021). Enhancement of Local Drug Delivery System Using Different Design of Gentamicin Loaded in Carbonate Apatite Scaffold. In: Hameed Sultan, M.T., Majid, M.S.A., Jamir, M.R.M., Azmi, A.I., Saba, N. (eds) Biocomposite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-33-4091-6_12

Download citation

Publish with us

Policies and ethics