Skip to main content
Log in

A hydrophobically-modified alginate gel system: utility in the repair of articular cartilage defects

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Alginate is a family of natural polysaccharides, widely used in industry and medicine for many applications, with its non toxic nature, gentle sol/gel transition procedure and low cost, alginate inferior biomechanical properties have limited its utility especially in tissue engineering. Additionally, ionically cross-linked alginate hydrogels generally lose most of their initial mechanical and swelling properties within a few hours in physiological solution. In order to overcome these limitations, the referenced alginate was treated by covalent fixation of octadecyl chains onto the polysaccharide backbone by esterification. In semi dilute solution, intermolecular hydrophobic interactions of long alkyl chains result in the formation of physical hydrogels, which can then be reinforced by the addition of calcium chloride. FTIR studies clearly showed the presence of ester bonds at 1612 and 1730 cm−1 indicating that the alkyl groups are incorporated in the backbone of resulting polymer. The endothermic peak and exothermic peak present in the DSC thermogram of Alg-C18 had shifted to lower temperatures comparing to native alginate (from 106 to 83°C and from 250 to 245°C, respectively) due to the esterification reaction that leads to high hydrophobic nature of the modified sample. From rheological experiments, it can be inferred that the combination of both calcium bridges and intermolecular hydrophobic interaction in the treated alginate leads to enhanced gel strength accompanied by more stable structure in physiological solution comparing to native sodium alginate hydrogel. Finally, the modified alginate tended to have no toxic effects on mesenchymal stem cell culture, rather it supported MSC chondrogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. An Y, Martin K. Handbook of histology methods for bone and cartilage. New Jersey: Humana Press; 2003.

    Book  Google Scholar 

  2. Temenoff J, Mikos A. Tissue engineering for regeneration of articular cartilage. Biomaterials. 2000;21:431–40.

    Article  CAS  Google Scholar 

  3. Alan P, Newman A. Articular cartilage repair. Am J Sports Med. 1998;26:809–24.

    Google Scholar 

  4. Hunziker E. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil. 2002;6:432–63.

    Article  Google Scholar 

  5. Elias J, DesJardins J, Faust A, Lietman S, Chao E. Size and position of a single condyle allograft influence knee kinematics. J Orthop Res. 1999;17:540–5.

    Article  CAS  Google Scholar 

  6. Toumbis C, Kronick J, Woolley P, Nasser S. Total joint arthroplasty and the immune response. Semin Arthritis Rheum. 1993;27(1):44–7.

    Article  Google Scholar 

  7. O’Driscoll S. The healing and regeneration of articular cartilage. J Bone Joint Surg Am. 1998;80:1795–812.

    Google Scholar 

  8. Trippel S. Autologous chondrocyte transplantation. N Engl J Med. 1995;332:539–40.

    Article  CAS  Google Scholar 

  9. Awad H, Erickson G, Guilak F, Biomaterials for cartilage tissue engineering. In: Lewandrowski K-U, Wise D, Trantolo D, Gresser J, Yaszemski M, Altobelli D (eds). Tissue engineering and biodegradable equivalents: scientific and clinical applications. Marcel Dekker Inc., New York.

  10. Freed L, Marqui J, Nohria A, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27:11–23.

    Article  CAS  Google Scholar 

  11. Free L, Vunjak-Novakovic G, Biron R, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology. 1994;12:689–93.

    Article  Google Scholar 

  12. Temenoff J, Mikos A. Injectable biodegradable materials for orthopaedic tissue engineering. Biomaterials. 2000;21:2405–12.

    Article  CAS  Google Scholar 

  13. Lee K, Mooney D. Hydrogels for tissue engineering. Chem Rev. 2001;101:1869–79.

    Article  CAS  Google Scholar 

  14. Fisher J, Mikos AG, Reddi AH. Thermoreversible hydrogel scaffolds for articular cartilage engineering. J Biomed Mater Res. 2004;71A:268–74.

    Article  CAS  Google Scholar 

  15. Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res. 2002;59:63–72.

    Article  CAS  Google Scholar 

  16. Fisher JP, Jo S, Mikos AG, Reddi AH. Thermoreversible hydrogel scaffolds for articular cartilage engineering. J Biomed Mater Res A. 2004. 2004;71(2):268–74.

    Article  Google Scholar 

  17. Holland T, Mikos A. Advances in drug delivery for articular cartilage. J Control Release. 2003;86:1–14.

    Article  CAS  Google Scholar 

  18. Diduch D, Jordan L, Mierisch C, et al. Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy. 2000;16:571–7.

    Article  CAS  Google Scholar 

  19. Aydelotte M, Thonar E, Mollenhauer J, et al. Culture of chondrocytes in alginate gel: variations in conditions of gelation influence the structure of the alginate gel, and the arrangement and morphology of proliferating chondrocytes. In Vitro Cell Dev Biol Anim. 1998;34:123–30.

    Article  CAS  Google Scholar 

  20. Cao Y, Rodriguez A, Vacanti M, et al. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed. 1998;9:475–87.

    Article  CAS  Google Scholar 

  21. Hauselmann H, Masuda K, Hunziker E, et al. Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am J Physiol Cell Physiol. 1996;271:742–52.

    Google Scholar 

  22. Marijnissen W, van Osch G, Aigner J, et al. Tissue-engineered cartilage using serially passaged articular chondrocytes. Chondrocytes in alginate, combined in vivo with a synthetic (E210) or biologic biodegradable carrier (DBM). Biomaterials. 2000;21:571–80.

    Article  CAS  Google Scholar 

  23. Kuettner K, Pauli B, GaAll G, Memoli V, Schenk R. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. jCell Biol. 1982;93:743–50.

    Article  CAS  Google Scholar 

  24. Shakibaei M, De Souza P. Differentiation of mesenchymal limb bud cells to chondrocytes in alginate beads. Cell Biol Int. 1998;21:75–86.

    Article  Google Scholar 

  25. Rowley J, Madlambayan G, Mooney D. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53.

    Article  CAS  Google Scholar 

  26. Thu B, Bruheim P, Espevik T, et al. Alginate polycation microcapsules: I. Interaction between alginate and polycation. Biomaterials. 1996;17:1031–40.

    Article  CAS  Google Scholar 

  27. Ýrr A, Mørch I, Donati B, et al. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7:1471–80.

    Article  Google Scholar 

  28. Strand B, Mørch Y, Syvertsen T, et al. Microcapsules made by enzymatically tailored alginate. J Biomed Mater Res. 2003;64:540–50.

    Article  Google Scholar 

  29. Pelletier S, Hubert P, Lapicque F, et al. Amphiphilic derivatives of sodium alginate and hyaluronate: synthesis and physico-chemical properties of aqueous dilute solutions. Carbohydr Polym. 2000;43:343–9.

    Article  CAS  Google Scholar 

  30. Leonard M, Rastello M, Boisseson De, et al. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. Journal of Controlled Release. 2004;98:395–405.

    Article  CAS  Google Scholar 

  31. Della Valle F, Romeo A (1990) US Patent, No. 4,965,353.

  32. Stevens M, Qunadilo H, Langer R, et al. A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. J Biomaterials. 2004;25:887–94.

    Article  CAS  Google Scholar 

  33. Moresi M, Bruno M. Charecterisation of alginate gels using quasi-static and dynamic methods. J.Food Engineering. 2007;82:298–309.

    Article  CAS  Google Scholar 

  34. Freshney R (1987) The culture environment: substrate, gas phase, medium, and temperature. In: Culture of animal cells, Alan R. Liss Inc., New York.

  35. Buschmann M, Gluzband Y, Grodzinsky A, et al. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108:1497–508.

    CAS  Google Scholar 

  36. Weber M, Steinert A, Jork A, Dimmler A, Thürmer F, Schütze N, Hendrich C, Zimmerman U. Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates. Biomaterials. 2002;23(9):2003–13.

    Article  CAS  Google Scholar 

  37. Broderick E, Lyons H, Pembroke T, et al. The characterisation of a novel, covalently modified, amphiphilic alginate derivative, which retains gelling and non-toxic properties. J Colloid Interf Sci. 2006;298:154–61.

    Article  CAS  Google Scholar 

  38. Ronghua H, Yumin D, Jianhong Y. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives. Carbohydr Polym. 2003;52:19–24.

    Article  Google Scholar 

  39. Kanti P, Srigowri K, Madhuri J, Smitha B, Sridhar S. De-hydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Sep Purif Technol. 2004;40:259–66.

    Article  CAS  Google Scholar 

  40. Smitha B, Sridhar S, Khan A. Chitosan–sodium alginate polyion complexes as fuel cell membranes Eur. Polym J. 2005;41:1859–66.

    CAS  Google Scholar 

  41. Zohuriaan M, Shokrolahi F. Thermal studies on natural and modified gums. Polym Test. 2004;23(5):575–9.

    Article  CAS  Google Scholar 

  42. Shimizu T, Takadab A. Preparation of Bi-based superconducting fiber by metal biosorption of Na-alginate. Polym Gels Netw. 1997;5:267–83.

    Article  CAS  Google Scholar 

  43. LeRoux MA, Guilak F, Setton LA. Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res. 1999;47(1):46–53.

    Article  CAS  Google Scholar 

  44. Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mesenchymal stem cells: a promising candidate in regenerative medicine. Int J Biochem Cell Biol. 2008;40(5):815–20.

    Article  CAS  Google Scholar 

  45. Xu J, Wang W, Ludeman M, Cheng K, Hayami T, Lotz JC, Kapila S. Chondrogenic differentiation of human mesenchymal stem cells in three-dimensional alginate gels. Tissue Eng Part A. 2008;14(5):667–80.

    Article  CAS  Google Scholar 

  46. Yang I, Kim S, Kim Y, Sun HJ, Kim S, Lee J. Comparison of phenotypic characterization between “alginate bead” and “pellet” culture systems as chondrogenic differentiation models for human mesenchymal stem cells. Yonsei Med J. 2004;45(5):891–900.

    CAS  Google Scholar 

  47. Ishaug S, Crane G, Miller M, et al. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res. 1997;36(1):17–28.

    Article  CAS  Google Scholar 

  48. Sutherland R, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 1986;46(10):5320–9.

    CAS  Google Scholar 

  49. Ramdi H, Legay C, Lièvremont M. Influence of matricial molecules on growth and differentiation of entrapped chondrocytes. Exp Cell Res. 1993;207(2):449–54.

    Article  CAS  Google Scholar 

  50. Beekman B, Verzijl N, Bank R, von der Mark K, TeKoppele JM. Synthesis of collagen by bovine chondrocytes cultured in alginate; posttranslational modifications and cell-matrix interaction. Exp Cell Res. 1997;237(1):135–41.

    Article  CAS  Google Scholar 

  51. Lee DA, Reisler T, Bader DL. Expansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques. Acta Orthop Scand. 2003;74(1):6–15.

    Article  Google Scholar 

  52. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials. 2003;24(20):3475–81.

    Article  CAS  Google Scholar 

  53. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA. 2002;99:4397.

    Article  CAS  Google Scholar 

  54. Ma HL, Hung SC, Lin SY, Chen YL, Lo WH. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A. 2003;64:273.

    Article  Google Scholar 

  55. Huang W, Chung U, Kronenberg H, Crombrugghe B. The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. PNAS. 2001;98:160–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Abdouss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghahramanpoor, M.K., Hassani Najafabadi, S.A., Abdouss, M. et al. A hydrophobically-modified alginate gel system: utility in the repair of articular cartilage defects. J Mater Sci: Mater Med 22, 2365 (2011). https://doi.org/10.1007/s10856-011-4396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4396-2

Keywords

Navigation