Skip to main content
Log in

Raman spectroscopy of primary bovine aortic endothelial cells: a comparison of single cell and cell cluster analysis

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 13 July 2011

Abstract

There are many techniques that allow in vitro interactions among cells and their environment to be monitored, including molecular, biochemical and immunochemical techniques. Traditional techniques for the analysis of cells often require fixation or lysis from substrates; however, use of such destructive methods is not feasible where the expanded cell cultures are required to be used for clinical implantation. Several studies have previously highlighted the potential of Raman spectroscopy to provide useful information on key biochemical markers within cells. As such, we highlight the capability of Raman spectroscopy with different laser spot sizes for use as a non-invasive, rapid, and specific method to perform in situ analysis of primary bovine aortic endothelial cells (BAECs). Raman spectra were collected from both individual live cells cultured on fused silica substrates and on clusters of live cells placed on fused silica substrates, measured at 532 and 785 nm. The results obtained show notable spectral differences in DNA/RNA region indicative of the relative cytoplasm and nucleus contributions. Raman spectra of cell clusters show slight variations in the intensity of the phenylalanine peak (1004 cm−1) indicating variations in protein contribution. These spectra also highlight contributions from other cellular components such as, proteins, lipids, nucleic acids and carbohydrates, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  Google Scholar 

  2. Ikada Y. Tissue engineering: fundamentals and applications. Amsterdam: Elsevier Science Ltd.; 2006.

    Google Scholar 

  3. Polak JM, Bishop AE. Stem cells and tissue engineering: past, present, and future. In: Annals of the New York Academy of Sciences, Skeletal Development and Remodeling in Health, Disease, and Aging, vol. 1068; 2006. p. 352–66.

  4. Notingher I, et al. In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. J Cell Biochem. 2004;92(6):1180–92.

    Article  CAS  Google Scholar 

  5. Mather ML, Morgan SP, Crow J. Meeting the needs of monitoring in tissue engineering. Regen Med. 2007;2:145–60.

    Article  Google Scholar 

  6. Notingher I. Raman spectroscopy cell-based biosensors. Optic Biosen. 2007;7(8):1343–58.

    CAS  Google Scholar 

  7. Notingher I, Hench LL. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev Med Devices. 2006;3:215–34.

    Article  CAS  Google Scholar 

  8. Notingher I, Verrier S, Haque S, Polak JM, Hench LL. Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells. Biopolymers. 2003;72(4):230–40.

    Article  CAS  Google Scholar 

  9. Swain RJ, Stevens MM. Raman microspectroscopy for non-invasive biochemical analysis of single cells. Biochem Soc Trans. 2007;035(3):544–9.

    Article  CAS  Google Scholar 

  10. Yang Y, Dubois A, Qin X, Li J, Haj A. Investigation of optical coherence tomography as an imaging modality in tissue engineering. Phys, Med Bio. 2006;51:1649–59.

    Article  Google Scholar 

  11. Krafft C. Bioanalytical applications of Raman spectroscopy. Anal Bioanal Chem. 2004;378(1):60–2.

    Article  CAS  Google Scholar 

  12. Puppels GJ, Garritsen HS, Segers-Nolten GM, de Mul FF, Greve J. Raman microspectroscopic approach to the study of human granulocytes. Biophys J. 1991;60(5):1046–56.

    Article  CAS  Google Scholar 

  13. Notingher I, Hench LL. In situ characterisation of living cells by Raman spectroscopy. Spectroscopy. 2002;16(2):43–51.

    CAS  Google Scholar 

  14. Short KW, Carpenter S, Freyer JP, Mourant JR. Raman spectroscopy detects biochemical changes due to proliferation in Mammalian Cell Cultures. Biophys J. 2005;88(6):4274–88.

    Article  CAS  Google Scholar 

  15. Swain RJ, Jell G, Stevens MM. Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy. J Cell Biochem. 2008;104(4):1427–38.

    Article  CAS  Google Scholar 

  16. Uzunbajakava N, Manen HWJV, Otto C. Raman microscopy on single cells: imaging of apoptosis and phagocytosis at high resolution. GIT Lab J Eur. 2004;8(3):22–5.

    Google Scholar 

  17. Verrier S, Notingher I, Polak JM, Hench LL. In situ monitoring of cell death using Raman microspectroscopy. Biopolymers. 2004;74(1–2):157–62.

    Article  CAS  Google Scholar 

  18. Jell G, Notingher I, Tsigkou O, Notingher P, Polak JM, Hench LL, Stevens MM. Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study. J Biomed Mater Res Part A. 2008;86A(1):31–40.

    Article  CAS  Google Scholar 

  19. Notingher I, Bisson I, Polak JM, Hench LL. In situ spectroscopic study of nucleic acids in differentiating embryonic stem cells. Vib Spectrosc. 2004;35(1–2):199–203.

    Article  CAS  Google Scholar 

  20. Notingher I, Jell G, Notingher P, Bisson I, Tsigkou O, Polak JM, Stevens MM, Hench LL. Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. J Mol Struct. 2005;744–747:179–85.

    Article  Google Scholar 

  21. Gentleman E, Swain RJ, Evans ND, Boonrungsiman S, Jell G, Ball MD, Shean TAV, Oyen ML, Porter A, Stevens MM. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat Mater. 2009;8(9):763–70.

    Article  CAS  Google Scholar 

  22. Huang M, Karashima T, Yamamoto K, Hamaguchi H. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy. Biochemistry. 2005;44(30):10009–19.

    Article  CAS  Google Scholar 

  23. Huang Y-S, Karashima T, Yamamoto M, Hamaguchi H. Molecular-level pursuit of yeast mitosis by time-and space-resolved Raman spectroscopy. J Raman Spectrosc. 2003;34(1):1–3.

    Article  CAS  Google Scholar 

  24. Booyse FM, Sedlak BJ, Rafelson ME. Culture of arterial endothelial cells: characterization and growth of bovine aortic cells. Thromb Diath Haemorrh. 1975;34(3):825–39.

    CAS  Google Scholar 

  25. Schwartz SM. Selection and characterization of bovine aortic endothelial cells. In Vitro. 1978;12(12):966–80.

    Article  Google Scholar 

  26. Boyd AR, Burke GA, Meenan BJ. Monitoring cellular behaviour using Raman spectroscopy for tissue engineering and regenerative medicine applications. J Mater Sci: Mater Med. 2010;21(8):2317–24.

    Article  CAS  Google Scholar 

  27. Uzunbajakava N, Lenferink ATM, Kraan YM, Willekens B, Vrensen GFJM, Greve J, Otto C. Nonresonant raman imaging of protein distribution in single human cells. Biopolymers. 2003;72(1):1–9.

    Article  CAS  Google Scholar 

  28. Chan JW, Taylor DS, Thompson DL. The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy. Biopolymers. 2009;91(2):132–9.

    Article  CAS  Google Scholar 

  29. Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis YI, Knaus P. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem. 2002;277:5330–8.

    Article  CAS  Google Scholar 

  30. Notingher I, Hench LL. A bio-photonics system for rapid in vitro testing of cells and ceramics. Key Eng Mater. 2005;284286:531–6.

    Google Scholar 

  31. Notingher I, Selvakumaran J, Hench LL. New detection system for toxic agents based on continuous spectroscopic monitoring of living cells. Biosens Bioelectron. 2004;20(4):780–9.

    Article  CAS  Google Scholar 

  32. Lakshmi RJ, Kartha VB, Murali Krishna C, Solomon JG, Ullas G, Uma Devi P. Tissue Raman spectroscopy for the study of radiation damage: brain irradiation of mice. Radiat Res. 2009;157(2):175–82.

    Article  Google Scholar 

  33. Naumann D. FT-infrared and FT-Raman spectroscopy in biomedical research. In: Gremlich HU, Yan B editors. Infrared and Raman spectroscopy of biological materials, New York: Marcel Dekker; 2001. p. 323–377.

  34. Carter EA, Edwards HGM. Bioloigcal Applications of Raman spectroscopy. In: Gremlich HU, Yan B, editors. Infrared and Raman Spectroscopy of Biological Materials. New York: Marcel Dekker; 2001. p. 421–476.

  35. Omberg KMO, Jill C, Zhang SL, Freyer JP, Mourant JR, Schoonover JR. Raman spectroscopy and factor analysis of tumorigenic and non-tumorigenic cells. Appl Spectros. 2002;56(7):813–9.

    Article  CAS  Google Scholar 

  36. Overman SA, Aubrey KL, Reilly KE, Osman O, Hayes SJ, Serwer P, Thomas GJ Jr. Conformation and interactions of the packaged double-stranded DNA genome of bacteriophage T7. Biospectroscopy. 1998;4(S5):S47–56.

    Article  CAS  Google Scholar 

  37. Kendall C, Stone N, Shepherd N, Geboes K, Warren B, Bennett R, Barr H. Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus. J Pathol. 2003;200(5):602–9.

    Article  Google Scholar 

  38. Mahadevan-Jensen A, Richards-Kortum R. Raman spectroscopy for the detection of cancers and precancers. J Biomed Opt. 1996;1(1):31–70.

    Article  Google Scholar 

  39. Borchman D, Tang D, Yappert MC. Lipid composition, membrane structure relationships in lens and muscle sarcoplasmic reticulum membranes. Biospectroscopy. 1999;5(3):151–67.

    Article  CAS  Google Scholar 

  40. Rajani C, Kincaid JR, Petering DH. Raman spectroscopy of an O(2)-Co(II)bleomycin-calf thymus DNA adduct: alternate polymer conformations. Biophys Chem. 2001;94(3):219–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the EPSRC for funding this project (EP/C534247/1 (Remedi) Regenerative Medicine—A New Industry). The authors would also like to thank the Department of Education and Learning Northern Ireland (DEL NI) for additional funding for the project and Horiba Scientific for the use of the Confocal XploRa Raman Microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boyd.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10856-011-4383-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, A.R., McManus, L.L., Burke, G.A. et al. Raman spectroscopy of primary bovine aortic endothelial cells: a comparison of single cell and cell cluster analysis. J Mater Sci: Mater Med 22, 1923–1930 (2011). https://doi.org/10.1007/s10856-011-4371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4371-y

Keywords

Navigation