Skip to main content

Fundamental Properties of Bioceramics and Biocomposites

  • Living reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Several varieties of ceramics, such as bioglass-type glasses, sintered hydroxyapatite, and glass-ceramic A–W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic–inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the bioactive composites. In this chapter, an overview of fundamental properties of ceramics and biocomposite materials for biomedical application was reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brydone AS, Meek D, Maclaine S (2010) Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H 224:1329–1343

    Article  Google Scholar 

  2. James R, Deng M, Laurencin C, Kumbar S (2011) Nanocomposites and bone regeneration. Front Mater Sci 5:342–357

    Article  Google Scholar 

  3. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6:4495–4505

    Article  Google Scholar 

  4. Scholz MS, Blanchfield JP, Bloom LD et al (2011) The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos Sci Technol 71:1791–1803

    Article  Google Scholar 

  5. Black J (1992) Biological performance of materials fundamentals of biocompatibility. Marcel Dekker, New York

    Google Scholar 

  6. Williams DF (1998) Consensus and definitions in biomaterials. In: de Putter C, de Lange K, de Groot K, Lee AJC (eds) Advances in biomaterials. Elsevier, Amsterdam, pp 11–16

    Google Scholar 

  7. Hench LL (1998) Bioceramics. Am Ceram Soc 81:1705–1727

    Article  Google Scholar 

  8. Hench LL, Wilson J (1993) An introduction to ceramics. World Scientific, London

    Book  Google Scholar 

  9. Hench LL, Splinter RJ et al (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141

    Article  Google Scholar 

  10. Hench LL (1991) Bioceramics; from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  11. Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 11:2027–2035

    Article  Google Scholar 

  12. Cho SB, Nakanishi K, Kokubo T et al (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769–1774

    Article  Google Scholar 

  13. Kawai T, Ohtsuki C, Kamitakahara M et al (2004) Coating of apatite layer on polyamide films containing sulfonic groups by biomimetic process. Biomaterials 25:4529–4534

    Article  Google Scholar 

  14. Sugino A, Tsuru K, Hayakawa S et al (2009) Induced deposition of bone-like hydroxyapatite on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body fluid. J Ceram Soc Jpn 117:515–520

    Article  Google Scholar 

  15. Boretos JW (1987) Advances in bioceramics. Adv Ceram Mater 2:15–24

    Google Scholar 

  16. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 2:117–141

    Google Scholar 

  17. Hulbert SF, Bokros JC, Hench LL, Wilson J, Heimke G (1997) Ceramics in clinical applications, past, present and future. In: Vincenzini P (ed) Ceramics in clinical applications. Elsevier, Amsterdam, pp 3–27

    Google Scholar 

  18. Sola A, Bellucci D, Raucci MG, Zeppetelli S, Ambrosio L, Cannillo V (2011) Heat treatment of Na2O–CaO–P2O5–SiO2 bioactive glasses: densification processes and post-sintering bioactivity. J Biomed Mater Res A 100A:305–322

    Article  Google Scholar 

  19. Van Blitterswijk CA, Grote JJ, Kuypers W et al (1985) Bioreactions at the tissue-hydroxyapatite interface. Biomaterials 6:243–251

    Article  Google Scholar 

  20. Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 120:138–151

    Article  Google Scholar 

  21. Sanchez-Sàlcedo S, Arcos D, Vallet-Regì M (2008) Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng Mater 377:19–42

    Article  Google Scholar 

  22. Daculsi G, Jegoux F, Layrolle P (2009) The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering. In: Basu B, Katti DS, Kumar A (eds) Advanced biomaterials: fundamentals, processing and applications. John Wiley & Sons, Inc., Hoboken, NJ, p 768

    Google Scholar 

  23. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28:2491–2504

    Article  Google Scholar 

  24. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R et al (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27:3230–3237

    Article  Google Scholar 

  25. Zhang HG, Zhu Q (2007) Preparation of porous hydroxyapatite with interconnected pore architecture. J Mater Sci Mater Med 18:1825–1829

    Article  Google Scholar 

  26. Ota Y, Kasuga T, Abe Y (1997) Preparation and compressive strength behaviour of porous ceramics with β-Ca3(PO3)2 fiber skeletons. J Am Ceram Soc 80:225–231

    Article  Google Scholar 

  27. Potoczek M, Zima A, Paszkiewicz Z, Slòsarczyk A (2009) Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceram Int 35:2249–2254

    Article  Google Scholar 

  28. von Doernberg MC, von Rechenberg B, Bohner M et al (2006) In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 27:5186–5198

    Article  Google Scholar 

  29. Mygind T, Stiehler M, Baatrup A et al (2007) Mesenchymal stem cell in growth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28:1036–1047

    Article  Google Scholar 

  30. Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63:626–633

    Article  Google Scholar 

  31. Tsuruga E, Takita H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121:317–324

    Article  Google Scholar 

  32. Hing K, Annaz B, Saeed S, Revell P, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16:467–475

    Article  Google Scholar 

  33. Dubok VA (2000) Bioceramics – yesterday, today, tomorrow. Powder Metall Met Ceram 39:381–394

    Article  Google Scholar 

  34. Ducheyne P, Qiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303

    Article  Google Scholar 

  35. Ohtsuki C, Kamitakahara M, Miyazaki T (2009) Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Interface 6:S349–S360

    Article  Google Scholar 

  36. le Nihouannen D, Daculsi G, Saffarzadeh A et al (2005) Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 36:1086–1093

    Article  Google Scholar 

  37. Nagase M, Baker DG, Schumacher HR (1988) Prolonged inflammatory reactions induced by artificial ceramics in the rat pouch model. J Rheumatol 15:1334–1338

    Google Scholar 

  38. Malik MA, Puleo DA, Bizios R, Doremus RH (1992) Osteoblasts on hydroxyapatite, alumina and bone surfaces in vitro: morphology during the first 2 h of attachment. Biomaterials 13:123–128

    Article  Google Scholar 

  39. Gomi K, Lowenberg B, Shapiro G, Davies JE (1992) Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials 20:91–96

    Google Scholar 

  40. Okuda T, Ioku K, Yonezawa I et al (2007) The effect of the microstructure of β-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Biomaterials 28:2612–2621

    Article  Google Scholar 

  41. Okumura M, Ohgushi H, Tamai S (1990) Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 12:28–37

    Google Scholar 

  42. Unger RE, Sartoris A, Peters K et al (2007) Tissue like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary like structures on three-dimensional porous biomaterials. Biomaterials 28:3965–3976

    Article  Google Scholar 

  43. de Groot K, Lein CPAT, Wolke JGC, de Bliek-Hogervost JMA (1990) Chemistry of calcium phosphate bioceramics. In: Yamamuro T, Hench LL, Wilson J (eds) Handbook of bioactive ceramics. CRC Press, Boca Raton, pp 3–16

    Google Scholar 

  44. Chiu JB, Liu C, Hsiao BS, Chu B, Hadjiargyrou M (2007) Functionalization of poly(l-lactide) nanofibrous scaffolds with bioactive collagen molecules. J Biomed Mater Res A 83A:1117–1127

    Article  Google Scholar 

  45. Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/bioglass(R) composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429

    Article  Google Scholar 

  46. Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151

    Article  Google Scholar 

  47. Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials 22:3197–3211

    Article  Google Scholar 

  48. Basile MA, Gomez D’Ayala G, Laurienzo P, Malinconico M, Della Ragione F, Oliva A (2012) Development of innovative biopolymers and related composites for bone tissue regeneration: study of their interaction with human osteoprogenitor cells. J Appl Biomater Funct Mater 10:210–214

    Google Scholar 

  49. Catauro M, Raucci MG, De Marco D, Ambrosio L (2006) Release kinetics of ampicillin, characterization and bioactivity of TiO2/PCL hybrid materials synthesized by sol–gel processing. J Biomed Mater Res 77A:340–350

    Article  Google Scholar 

  50. Ng AM, Tan KK, Phang MY et al (2008) Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J Biomed Mater Res 85A:301–312

    Article  Google Scholar 

  51. Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds:design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32:1728–1743

    Article  Google Scholar 

  52. Raucci MG, D’Antò V, Guarino V, Zeppetelli S, Ambrosio L (2010) Biocompatibility and osteoconductivity studies on hydroxyapatite-polymer composite scaffolds prepared by chemical synthesis. J Appl Biomater Biomech 8:123

    Google Scholar 

  53. Linhart W, Peters F, Lehmann W et al (2001) Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 54:166–171

    Article  Google Scholar 

  54. Raucci MG, Alvarez-Perez MA, Meikle S, Ambrosio L, Santin M (2014) Poly(epsilon-Lysine) dendrons tethered with phosphoserine increase mesenchymal stem cell differentiation potential of calcium phosphate gels. Tissue Eng A 20:474–485

    Google Scholar 

  55. Dessì M, Raucci MG, Zeppetelli S, Ambrosio L (2012) Design of injectable organic–inorganic hybrid for bone tissue repair. J Biomed Mater Res A 100:2063–2070

    Article  Google Scholar 

  56. Raucci MG, Guarino V, Ambrosio L (2010) Hybrid composite scaffolds prepared by sol–gel method for bone regeneration. Compos Sci Technol 70:1861–1868

    Article  Google Scholar 

  57. Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28:354–369

    Article  Google Scholar 

  58. Kokubo T (1998) Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 46:2519–2527

    Article  Google Scholar 

  59. Lü X, Zheng B, Tang X, Zhao L, Lu J, Zhang Z, Zhang J, Cui W (2011) In vitro biomechanical and biocompatible evaluation of natural hydroxyapatite/chitosan composite for bone repair. J Appl Biomater Biomech 9:11–18

    Google Scholar 

  60. Mobasherpour I, Soulati Heshajin M, Kazemzadeh A, Zakeri M (2007) Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J Alloys Compd 430:330–333

    Article  Google Scholar 

  61. Ronca A, Ambrosio L, Grijpma DW (2012) Design of porous three-dimensional PDLLA/nano-hap composite scaffolds using stereolithography. J Appl Biomater Funct Mater 10:249–258

    Google Scholar 

  62. Khan YM, Katti DS, Laurencin CT (2004) Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation. J Biomed Mater Res A69:728–737

    Article  Google Scholar 

  63. Raucci MG, Alvarez-Perez MA, Demitri C, Sannino A, Ambrosio L (2012) Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J Appl Biomater Funct Mater 10:302–307

    Google Scholar 

  64. Sharifi S, Kamali M, Mohtaram NK et al (2011) Preparation, mechanical properties, and in vitro biocompatibility of novel nanocomposites based on polyhexamethylene carbonate fumarate and nanohydroxyapatite. Polym Adv Technol 22:605–611

    Article  Google Scholar 

  65. Raucci MG, D’Antò V, Guarino V, Sardella E, Zeppetelli S, Favia P, Ambrosio L (2010) Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Acta Biomater 6:4090–4099

    Article  Google Scholar 

  66. Liao SS, Cui FZ (2004) In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(l-lactide). Tissue Eng 10:73–80

    Article  Google Scholar 

  67. Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, Appleyard R, Zreiqat H (2010) The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials 31:5498–5509

    Article  Google Scholar 

  68. Cunniffe GM, Dickson GR, Partap S, Stanton KT, O’Brien FJ (2010) Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. J Mater Sci Mater Med 21:2293–2298

    Article  Google Scholar 

  69. Barbani N, Guerra GD, Cristallini C et al (2012) Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. J Mater Sci Mater Med 23:51–61

    Article  Google Scholar 

  70. Luo TJM, Ko CC, Chiu CK, Llyod J, Huh U (2010) Aminosilane as an effective binder for hydroxyapatite–gelatin nanocomposites. J Sol–Gel Sci Technol 53:459–465

    Article  Google Scholar 

  71. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681

    Article  Google Scholar 

  72. Kang IK, Kwon BK, Lee JH, Lee HB (1993) Immobilization of proteins on poly(methyl methacrylate) films. Biomaterials 14:787–792

    Article  Google Scholar 

  73. Williams RA, Blanch HW (1994) Covalent immobilization of protein monolayers for biosensor applications. Biosens Bioelectron 9:159–167

    Article  Google Scholar 

  74. Heule M, Rezwan K, Cavalli L, Gauckler LJ (2003) A miniaturized enzyme reactor based on hierarchically shaped porous ceramic microstruts. Adv Mater 15:1191–1194

    Article  Google Scholar 

  75. Jansen JA, Vehof JWM, Ruhe PQ et al (2005) Growth factor-loaded scaffolds for bone engineering. J Control Release 101:127–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Raucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Raucci, M.G., Giugliano, D., Ambrosio, L. (2015). Fundamental Properties of Bioceramics and Biocomposites. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-09230-0_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09230-0_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-09230-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics