Skip to main content

Advertisement

Log in

Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biomaterial surface properties, via alterations in the adsorbed protein layer, and the presence of specific functional groups can influence integrin binding specificity, thereby modulating cell adhesion and differentiation processes. The adsorption of fibronectin, a protein directly involved in osteoblast adhesion to the extracellular matrix, has been related to different physical and chemical properties of biomaterial surfaces. This study used blasting particles of different sizes and chemical compositions to evaluate the response of MG63 osteoblast-like cells on smooth and blasted titanium surfaces, with and without fibronectin coatings, by means of real-time reverse transcription-polymerase chain reaction (qRT-PCR) assays. This response included (a) expression of the α5, αv and α3 integrin subunits, which can bind to fibronectin through the RGD binding site, and (b) expression of alkaline phosphatase (ALP) and osteocalcin (OC) as cell-differentiation markers. ALP activity and synthesis of OC were also tested. Cells on SiC-blasted Ti surfaces expressed higher amounts of the α5 mRNA gene than cells on Al2O3-blasted Ti surfaces. This may be related to the fact that SiC-blasted surfaces adsorbed higher amounts of fibronectin due to their higher surface free energy and therefore provided a higher number of specific cell-binding sites. Fn-coated Ti surfaces decreased α5 mRNA gene expression, by favoring the formation of other integrins involved in adhesion over α5β1. The changes in α5 mRNA expression induced by the presence of fibronectin coatings may moreover influence the osteoblast differentiation pathway, as fibronectin coatings on Ti surfaces also decreased both ALP mRNA expression and ALP activity after 14 and 21 days of cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.

    Article  CAS  Google Scholar 

  2. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–21.

    Article  CAS  Google Scholar 

  3. Groth T, Altankov G, Klosz K. Adhesion of human peripheral-blood lymphocytes is dependent on surface wettability and protein preadsorption. Biomaterials. 1994;15:423–8.

    Article  CAS  Google Scholar 

  4. Degasne I, Basle MF, Demais V, Hure G, Lesourd M, Grolleau B, Mercier L, Chappard D. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64:499–507.

    Article  CAS  Google Scholar 

  5. Lebaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 2000;6:85–103.

    Article  CAS  Google Scholar 

  6. Faucheux N, Tzoneva R, Nagel MD, Groth T. The dependence of fibrillar adhesions in human fibroblasts on substratum chemistry. Biomaterials. 2006;27:234–45.

    Article  CAS  Google Scholar 

  7. Garcia AJ. Get a grip: integrins in cell–biomaterial interactions. Biomaterials. 2005;26:7525–9.

    Article  CAS  Google Scholar 

  8. Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials. 2004;25:5947–54.

    Article  CAS  Google Scholar 

  9. Gronthos S, Stewart K, Graves SE, Hay S, Simmons PJ. Integrin expression and function on human osteoblast-like cells. J Bone Miner Res. 1997;12:1189–97.

    Article  CAS  Google Scholar 

  10. Sousa SR, Moradas-Ferreira P, Saramago B, Melo LV, Barbosa MA. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma. Langmuir. 2004;20:9745–54.

    Article  CAS  Google Scholar 

  11. Aparicio C, Gil FJ, Thams U, Munoz F, Padros A, Planell JA. Osseointegration of grit-blasted and bioactive titanium implants: histomorphometry in mini pigs. Key Eng Mater. 2004;254–2:737–40.

    Article  Google Scholar 

  12. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials. 1998;19:2219–32.

    Article  CAS  Google Scholar 

  13. Groessnerschreiber B, Tuan RS. Enhanced extracellular-matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J Cell Sci. 1992;101:209–17.

    CAS  Google Scholar 

  14. ter Brugge PJ, Torensma R, De Ruijter JE, Figdor CG, Jansen JA. Modulation of integrin expression on rat bone marrow cells by substrates with different surface characteristics. Tissue Eng. 2002;8:615–26.

    Article  CAS  Google Scholar 

  15. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res. 1996;32:55–63.

    Article  CAS  Google Scholar 

  16. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface-roughness on proliferation, differentiation, and protein-synthesis of human osteoblast-like cells (Mg63). J Biomed Mater Res. 1995;29:389–401.

    Article  CAS  Google Scholar 

  17. Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials. 2005;26:137–46.

    Article  CAS  Google Scholar 

  18. Keselowsky BG, Garcia AJ. Quantitative methods for analysis of integrin binding and focal adhesion formation on biomaterial surfaces. Biomaterials. 2005;26:413–8.

    Article  CAS  Google Scholar 

  19. Sousa SR, Moradas-Ferreira P, Barbosa MA. TiO2 type influences fibronectin adsorption. J Mater Sci Mater Med. 2005;16:1173–8.

    Article  CAS  Google Scholar 

  20. Garcia AJ, Vega MD, Boettiger D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell. 1999;10:785–98.

    CAS  Google Scholar 

  21. Hynes RO. Integrins—versatility, modulation, and signaling in cell-adhesion. Cell. 1992;69:11–25.

    Article  CAS  Google Scholar 

  22. Heino J, Massagué J. Transforming growth factor-β switches the pattern of integrins expressed in MG-63 human osteosarcoma cell and causes a selective loss of cell adhesion to laminin. J Biol Chem. 1989;264:21806–10.

    CAS  Google Scholar 

  23. Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium grit blasted with different materials and sizes of grit particles for dental implant applications. Biomaterials. 2003;24:263–73.

    Article  CAS  Google Scholar 

  24. Pegueroles M, Gil FJ, Planell J, Aparicio C. The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces. Surf Coat Technol. 2008;202:3470–9.

    Article  CAS  Google Scholar 

  25. Pegueroles M, Aparicio C, Bosio M, Engel E, Gil FJ, Planell JA, Altankov G. Spatial organization of osteoblast fibronectin-matrix on titanium surfaces—effects of roughness, chemical heterogeneity and surface free energy. Acta Biomater. 2010;6:291–301.

    Article  CAS  Google Scholar 

  26. Zhao G, Raines AL, Wieland M, Shwartz Z, Boyan BD. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials. 2007;28:2821–9.

    Article  CAS  Google Scholar 

  27. Keselowsky BG, Wang L, Schwartz Z, Garcia AJ, Boyan BD. Integrin α5 controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J Biomed Mater Res A. 2007;80:700–10.

    CAS  Google Scholar 

  28. Lange R, Luthen F, Beck U, Rychly J, Baumann A, Nebe B. Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol Eng. 2002;19:255–61.

    Article  CAS  Google Scholar 

  29. Luthen F, Lange R, Becker P, Rychly J, Beck U, Nebe JGB. The influence of surface roughness of titanium on beta 1- and beta 3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials. 2005;26:2423–40.

    Article  Google Scholar 

  30. Raz P, Lohmann CH, Turner J, Wang L, Poythress N, Blanchard C, Boyan BD. 1α, 25(OH)2D3 regulation of integrin expression is substrate dependent. J Biomed Mater Res A. 2004;71:217–25.

    Article  CAS  Google Scholar 

  31. Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH. Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res. 1999;14:1075–83.

    Article  CAS  Google Scholar 

  32. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000;49:155–66.

    Article  CAS  Google Scholar 

  33. Keselowsky BG, Collard DM, Garcia AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA. 2005;102:5953–7.

    Article  CAS  Google Scholar 

  34. Petrie TA, Raynor JE, Reyes CD, Burns KL, Collard DM, Garcia AJ. The effect of integrin-specific bioactive coatings on tissue healing and implant osseointegration. Biomaterials. 2008;29:2849–57.

    Article  CAS  Google Scholar 

  35. Cheng SL, Lai CF, Fausto A, Chellaiah M, Feng X, Mchugh KP, Teitelbaum SL, Civitelli R, Hruska KA, Ross FP, Avioli LV. Regulation of alpha v beta 3 and alpha v beta 5 integrins by dexamethasone in normal human osteoblastic cells. J Cell Biochem. 2000;77:265–76.

    Article  CAS  Google Scholar 

  36. Aparicio C, Gil FJ, Planell JA, Engel E. Human-osteoblast proliferation and differentiation on grit-blasted and bioactive titanium for dental applications. J Mater Sci Mater Med. 2002;13:1105–11.

    Article  CAS  Google Scholar 

  37. Boyan BD, Lossdorfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, Schwartz Z. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur Cells Mater. 2003;6:22–7.

    CAS  Google Scholar 

  38. Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res. 1999;13:38–48.

    Article  CAS  Google Scholar 

  39. Orsini G, Assenza B, Scarano A, Piatelli M, Piatelli A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants. 2000;15:779–84.

    CAS  Google Scholar 

  40. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone. 1998;23:187–96.

    Article  CAS  Google Scholar 

  41. Ku CH, Piolettli DP, Browne M, Gregson PJ. Effect of different Ti–6Al–4V surface treatments on osteoblasts behaviour. Biomaterials. 2002;23:1447–54.

    Article  CAS  Google Scholar 

  42. Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, Boyan BD. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials. 2005;26:1837–47.

    Article  CAS  Google Scholar 

  43. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype invitro—reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular-matrix. J Cell Physiol. 1990;143:420–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Spanish Interministerial Commission for Science and Technology (CICYT) for financial support under the MAT2003-08165 project. They would also like to thank Klockner S. L. for technical help in sample preparation and MPA, S. L. (Materias Primas Abrasivas) for providing the blasting particles and blasting machine. M. Pegueroles would like to thank the Universitat Politècnica de Catalunya (UPC) for grant funding to complete her PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Aparicio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegueroles, M., Aguirre, A., Engel, E. et al. Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR. J Mater Sci: Mater Med 22, 617–627 (2011). https://doi.org/10.1007/s10856-011-4229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4229-3

Keywords

Navigation