Skip to main content

Advertisement

Log in

Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

One of the most important challenges in composite scaffolds is pore architecture. In this study, poly (3-hydroxybutyrate) with 10% bioglass nanoparticles was prepared by the salt leaching processing technique, as a nanocomposite scaffold. The scaffolds were characterized by SEM, FTIR and DTA. The SEM images demonstrated uniformed porosities of appropriate sizes (about 250–300 μm) which are interconnected. Furthermore, higher magnification SEM images showed that the scaffold possesses less agglomeration and has rough surfaces that may improve cell attachment. In addition, the FTIR and DTA results showed favorable interaction between polymer and bioglass nanoparticles which improved interfaces in the samples. Moreover, the porosity of the scaffold was assessed, and the results demonstrated that the scaffold has uniform and high porosity in its structure (about 84%). Finally it can be concluded that this scaffold has acceptable porosity and morphologic character paving the way for further studies to be conducted from the perspective of bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000;371:10–27.

    Article  PubMed  Google Scholar 

  3. Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, et al. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res. 2005;8:277–84.

    Article  CAS  PubMed  Google Scholar 

  4. Bonfiglio M, Jeter WS. Immunological responses to bone. Clin Orthop Relat Res. 1972;87:19–27.

    CAS  PubMed  Google Scholar 

  5. Vacanti JP, Vacanti CA. In: Lanza RP, Langer R, Vacanti J, editors. Principles of tissue engineering. 2nd ed. California: Academic Press; 2000. p. 3.

  6. Temenoff JS, Lu L, Mikos AG. In: Davies JE, editor. Bone engineering. Toronto: EM Squared; 2000. p. 455.

  7. Laurencin CT, Attawia M, Borden MD. Advancements in tissue engineered bone substitutes. Curr Opin Orthop. 1999;10:445–51.

    Article  Google Scholar 

  8. Coombes AG, Meikle MC. Resorbable synthetic polymers as replacements for bone graft. Clin Mater. 1994;17:35–67.

    Article  CAS  PubMed  Google Scholar 

  9. Salgada AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.

    Article  CAS  Google Scholar 

  10. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.

    Article  CAS  PubMed  Google Scholar 

  11. Guoping C, Takashi U, Tetsuya T. Scaffold design for tissue engineering. Macromol Biosci. 2002;2(2):67–77.

    Article  Google Scholar 

  12. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30–40.

    Article  CAS  Google Scholar 

  13. Williams SF, Martin DP, Horowitz DM, Peoples OP. PHA applications: addressing the price performance issue I. Tissue engineering. Int J Biol Macromol. 1999;25:111–21.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao K, Deng Y, Chen JC, Chen GQ. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials. 2003;2:1041–5.

    Article  Google Scholar 

  15. Valappil SP, Misra SK, Boccaccini AR, Roy I. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Device. 2006;3:853–68.

    Article  CAS  Google Scholar 

  16. Chen GQ, Wu Q. The application of polyhydroxyalkanoate as tissue engineering materials. Biomaterials. 2005;26:6565–78.

    Article  CAS  PubMed  Google Scholar 

  17. Freier T, Sternberg K, Behrend D, Schmitz KP. Health issues of biopolymers: polyhydroxybutyrate. In: Doi Y, Steinbu¨chel A, editors. Biopolymers. Weinheim: Wiley-VCH; 2002. p. 247.

    Google Scholar 

  18. Reusch RN. Low molecular weight complexed poly(3-hydroxybutyrate): a dynamic and versatile molecule in vivo. Can J Microbiol. 1995;41(Suppl. 1):50–4.

    Article  CAS  PubMed  Google Scholar 

  19. Martin DP, Peoples OP, Williams SF, Zhong LH. Nutritional and therapeutic uses of 3-hydroxyalkanoate oligomers. US Patent Appl 359086, 1999.

  20. Nebe B, Forster C, Pommerenke H, Fulda G, Behrend D, Bernewski U, et al. Structural alterations of adhesion mediating components in cells cultured on poly b hydroxyl butyric acid. Biomaterials. 2001;22:2425–34.

    Article  CAS  PubMed  Google Scholar 

  21. Shishatskaya EI, Volova TG. A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. J Mater Sci Mater Med. 2004;15:915–23.

    Article  CAS  PubMed  Google Scholar 

  22. Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev. 2001;53:5–21.

    Article  CAS  PubMed  Google Scholar 

  23. Young RC, Wiberg M, Terenghi G. Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long gap repair in peripheral nerves. Br J Plast Surg. 2002;55:235–40.

    Article  CAS  PubMed  Google Scholar 

  24. Novikova LN, Pettersson J, Brohlin M, Wiberg M, Novikov LN. Biodegradable poly-b-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials. 2009;29:1198–206.

    Article  CAS  Google Scholar 

  25. Fukada E, Ando Y. Piezoelectric properties of poly-b-hydroxybutyrate and copolymers of b-hydroxybutyrate and b-hydroxyvalerate. Int J Biol Macromol. 1986;8:361–6.

    Article  CAS  Google Scholar 

  26. Knowles JC, Mahmud FA, Hastings GW. Piezoelectric characteristics of polyhydroxybutyrate based composite. Clin Mater. 1991;8:155–8.

    Article  CAS  Google Scholar 

  27. Zhao Y, Zou B, Shi Z, Wu Q, Che GQ. The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials. 2007;28:3063–73.

    Article  CAS  PubMed  Google Scholar 

  28. Galego N, Rozsa C, Sanchez R, Fung J, Vazquez A, Tomas JS. Characterization and application of poly(b-hydroxyalkanoates) family as composite biomaterials. Polym Test. 2000;19:485–92.

    Article  CAS  Google Scholar 

  29. Misra SK, Valappil SP, Roy I, Boccaccini AR. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules. 2006;7:2249–58.

    Article  CAS  PubMed  Google Scholar 

  30. Ni J, Wang M. In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater Sci Eng C-Bio S. 2002;20:101–9.

    Article  Google Scholar 

  31. Luklinska ZB, Bonfield W. Morphology and ultrastructure of the interface between hydroxyapatite-polyhydroxybutyrate composite implant and bone. J Mater Sci Mater Med. 1997;8:379–83.

    Article  CAS  PubMed  Google Scholar 

  32. Misra SK, Nazhat SN, Valappil SP, Torbati MM, Wood RJK, Roy I, et al. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing Bioglass. Biomacromolecules. 2007;8:2112–9.

    Article  CAS  PubMed  Google Scholar 

  33. Fisher JP, Mikos AG, Bronzino GD. Tissue engineering: nanocomposite scaffolds for tissue engineering. CRC Press; 2007. p 11.

  34. Wei G, Ma PX. Structural and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–57.

    Article  CAS  PubMed  Google Scholar 

  35. Wanga H, Lia Y, Zuoa Y, Lib J, Mab S, Chenga L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28:3338–48.

    Article  CAS  Google Scholar 

  36. Guan D, Chen Z, Huang C, Lin Y. Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds. Appl Surf Sci. 2008;255:324–7.

    Article  CAS  ADS  Google Scholar 

  37. Ginebra MP, Driessens FCM, Planell JA. Effect of the particle size on the micro and nanostructural features of calcium phosphate cement: a kinetic analysis. Biomaterials. 2004;25:3453–62.

    Article  CAS  PubMed  Google Scholar 

  38. Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C. 2007;27:441–9.

    Article  CAS  Google Scholar 

  39. Zhang F, Lin K, Chang J, Lu J, Ning C. Spark plasma sintering o macro-porous calcium phosphate scaffolds from nano-crystalline powders. J Eu Ceram Soc. 2008;28(3):539–45.

    Article  CAS  Google Scholar 

  40. Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, et al. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007;3:936–43.

    Article  CAS  PubMed  Google Scholar 

  41. Brunner TJ, Grass RN, Stark WJ. Glass and bioglass nanopowders by flame synthesis. Chem Commun. 2006;13:1384–6.

    Article  CAS  Google Scholar 

  42. Rhee SH, Choi JY. Preparation of a bioactive poly (methyl methacrylate)/silica nanocomposite. J Am Ceram Soc. 2002;85:1318–20.

    Article  CAS  Google Scholar 

  43. Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials. 2008;29:1750–61.

    Article  CAS  PubMed  Google Scholar 

  44. Hong Z, Reis RL, Mano JF. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 2008;4:1297–306.

    Article  CAS  PubMed  Google Scholar 

  45. Lu X, Lv X, Sun Z, Zheng Y. Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: synthesis and characterization. Eur Polym J. 2008;44:2476–81.

    Article  CAS  Google Scholar 

  46. Torres FG, Nazhat SN, Md Sheikh, Fadzullah SH, Maquet V, Boccaccini AR. Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds. Compos Sci Technol. 2007;67:1139–47.

    Article  CAS  Google Scholar 

  47. Boccaccini AR, Gerhardt LC, Rebeling S, Blaker JJ. Fabrication, characterization and assessment of bioactivity of poly (d, l-lactid acid) (PDLLA)/TiO2 nanocomposite films. Compos Part A-Appl S. 2005;36:721–7.

    Article  CAS  Google Scholar 

  48. Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD. Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Comp Sci Technol. 2002;62:1105–12.

    Article  CAS  Google Scholar 

  49. Misra1 SK, Watts PCP, Valappil1 SP, Silva SRP, Roy I, Boccaccini AR. Poly(3-hydroxybutyrate)/Bioglass_composite films containing carbon nanotubes. Nanotechnology. 2007;18:075701(7 pp).

    Google Scholar 

  50. Grausova L, Kromka A, Bacakova L, Potocky S, Vanecek M, Lisa V. Bone and vascular endothelial cells in cultures on nanocrystalline diamond films. Diam Relat Mater. 2008;17:1405–9.

    Article  CAS  Google Scholar 

  51. Palin E, Liu HN, Webster TJ. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology. 2005;16:1828–35.

    Article  CAS  ADS  Google Scholar 

  52. Wilson J, Pigot GH, Schoen FJ, Hench LL. Toxicology and Biocompatibility of bioglass. J Biomed Mater Res. 1981;15:805–11.

    Article  CAS  PubMed  Google Scholar 

  53. Oonishi H, Kutrshitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, et al. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res. 1997;334:316–25.

    Article  PubMed  Google Scholar 

  54. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R. Porous poly(a-hydroxyacid)/bioglasss composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials. 2004;25:4185–94.

    Article  CAS  PubMed  Google Scholar 

  55. Boccaccini AR. Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglasss particles for tissue engineering applications. J Mater Sci Mater Med. 2003;14:350–443.

    Article  Google Scholar 

  56. Gatti AM, Valdre G, Andersson OH. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials. 1994;15:208–12.

    Article  CAS  PubMed  Google Scholar 

  57. Fathi MH, Doostmohammadi A. Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mat Sci Eng A-Struct. 2008;474:128–33.

    Article  CAS  Google Scholar 

  58. Fathi MH, Doostmohammadi A. Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J Mater Process Tech. 2009;209:1385–91.

    Article  CAS  Google Scholar 

  59. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–6.

    Article  CAS  PubMed  Google Scholar 

  60. Oh SH, Park K, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28(9):1664–71.

    Article  CAS  PubMed  Google Scholar 

  61. Petite H, Quarto R. Engineered bone: tissue engineering of bone. Eurekah.com; 2005. p. 108.

  62. Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22:1241–51.

    Article  CAS  PubMed  Google Scholar 

  63. Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 2007;28:2175–82.

    Article  CAS  PubMed  Google Scholar 

  64. Boissard CIR, Bourban PE, Tami AE, Alini M, Eglin D. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Acta Biomater. 2009;5:3316–27.

    Article  CAS  PubMed  Google Scholar 

  65. Deng C, Wen J, Lu X, Zhou SB, Wan JX, Qu SX, et al. Mechanism of ultrahigh elongation rate of poly(d, l-lactide)-matrix composite biomaterial containing nano-apatite fillers. Mater Lett. 2008;62:607–10.

    Article  CAS  Google Scholar 

  66. Zhu ZK, Yang Y, Yin J, Qi ZN. Preparation and properties of organosoluble polyimide/silica hybrid materials by sol–gel process. J Appl Polym Sci. 1999;73:2977–84.

    Article  CAS  Google Scholar 

  67. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3(2):232–8.

    Article  CAS  PubMed  Google Scholar 

  68. Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci. 2004;9:1422–32.

    Article  CAS  PubMed  Google Scholar 

  69. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  70. Pappas GS, Liatsi P, Kartsonakis IA, Danilidis I, Kordas G. Synthesis and characterization of new SiO2–CaO hollow nanospheres by sol–gel method: bioactivity of the new system. J Non-Cryst Solids. 2008;354:755–60.

    Article  CAS  Google Scholar 

  71. Shajan XS, Mahadevan C. FT-IR spectroscopic and thermal studies on pure and impurityadded calcium tartrate tetrahydrate crystals. Cryst Res Technol. 2005;40:598–602.

    Article  CAS  Google Scholar 

  72. Xua J, Guoa BH, Yanga R, Wub Q, Chenb GQ, Zhang ZM. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer. 2002;43:6893–9.

    Article  Google Scholar 

  73. Sanz-Herrera A, Garcia-Aznar JM, Doblare M. A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech Model Mech. 2008;7:355–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Karbasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajiali, H., Karbasi, S., Hosseinalipour, M. et al. Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. J Mater Sci: Mater Med 21, 2125–2132 (2010). https://doi.org/10.1007/s10856-010-4075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4075-8

Keywords

Navigation