Skip to main content
Log in

From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite–polymer composite materials, as biological bone tissue materials, have become an important research direction. In this paper, the calcium carbonate from the crabshells was transformed into hydroxyapatite by a hydrothermal process. According to the method that we called Biomorphic Mineralization synthesis, we obtained a novel kind of hydroxyapatite-chitosan composite materials which reserved the natural perfect structure of the original crabshells. Benefited from its fine micro-structure as the crabshells, this kind of materials held a high value of tensile modulus, which is expected to be promising bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ge Z, Baguenard S, Lim LY, Wee A, Khor E. Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials. 2004;25:1049–58.

    Article  CAS  PubMed  Google Scholar 

  2. Freier T, Montenegro R, Koh HS, Shoichet MS. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials. 2005;26:4624–32.

    Article  CAS  PubMed  Google Scholar 

  3. Zhihua L, Kangning S, Aimin L. Hydroxyapatite composites: current status and future directions. Mater Rev. 2003;17(S1):197–9.

    Google Scholar 

  4. Lie S, Fei Q, Yuqiang Z, et al. Mechanical properties and degradation properties in vitro of carbon fiber reinforced hydroxyapatite/polylactide composite. Acta Mater Compo Sin. 2007;24(5):61265.

    Google Scholar 

  5. Rusu VM, Ng C-H, Wilke M, Tiersch B, Fratzl P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials. 2005;26:5414–26.

    Article  CAS  PubMed  Google Scholar 

  6. Yokoyama A, Yamamoto S, Kawasaki T, Kohgo T, Nakasu M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials. 2002;23:1091–101.

    Article  CAS  PubMed  Google Scholar 

  7. Seeherman H, Li R, Wozney J. A review of preclinical program development for evaluating injectable carriers for osteogenic factors. J Bone Jt Surg Am. 2003;85A(Suppl 3):96–108.

    Google Scholar 

  8. Kumar MNV. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    Article  CAS  Google Scholar 

  9. Singh DK, Ray AR. Biomedical applications of chitin, chitosan, and their derivatives. J Macromol Sci. 2000;C40:69–83.

    CAS  Google Scholar 

  10. Yubao L, Aiping Y, Xuelin P, Xuejiang W, Xiang Z. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci: Mater Med. 2005;16:213–9.

    Article  Google Scholar 

  11. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–90.

    Article  PubMed  Google Scholar 

  12. Khor E. Chitin: fulfilling a biomaterials promise. Amsterdam: Elsevier; 2001.

    Google Scholar 

  13. Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20(12):1133–42.

    Article  CAS  PubMed  Google Scholar 

  14. Yin YJ, Zhao F, Song XF, Yao KD. Preparation and characterization of hydroxyapatite/chitosan-gelatin network composite. J Appl Polym Sci. 2000.

  15. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res. 2000;55:20–7.

    Article  Google Scholar 

  16. Hu Q, Li B, Wang M, Shen J. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials. 2004;25:779–85.

    Article  CAS  PubMed  Google Scholar 

  17. Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater. 2007;3:910–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lin A, Meyer MA, Vecchio KS. Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Halitos refuscens seashells: a comparative study. Mater Sci Eng C. 2006;26:1380–9.

    Article  CAS  Google Scholar 

  19. Fan T-X, Chow S-K, Zhang Di. Biomorphic mineralization: from biology to materials. Proc Mater Sci. 2009;54:542–659.

    Article  CAS  Google Scholar 

  20. Yamaguchi I, Itoh S, Suzuki M, Osaka A, Tanaka J. The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration. Biomaterials. 2003;24:3285–92.

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi I, Itoh S, Suzuki M, Sakane M, Osaka A, Tanaka J. The chitosan prepared from crab tendon I: the characterization and the mechanical properties. Biomaterials. 2003;24:2031–6.

    Article  CAS  PubMed  Google Scholar 

  22. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-l-lactide (PLLA): Part I Basic characteristics. Biomaterials. 1999;20:859–77.

    Article  CAS  PubMed  Google Scholar 

  23. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly l-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials. 2001;22:3197–211.

    Article  CAS  PubMed  Google Scholar 

  24. Cai X, Tong H, Shen X, Chen W, Yan J, Hu J. Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater. 2009;5:2693–703.

    Article  CAS  PubMed  Google Scholar 

  25. Heredia A, Aguilar-Franco M, Magaña C, Flores C, Piña C, Velázquez R, et al. Structure and interactions of calcite spherulites with α-chitin in the brown shrimp (Penaeus aztecus) shell. Mater Sci Eng. 2007;27(1):8–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, H., Zhao, B., Lai, Y. et al. From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method. J Mater Sci: Mater Med 21, 1781–1787 (2010). https://doi.org/10.1007/s10856-010-4045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4045-1

Keywords

Navigation