Skip to main content
Log in

Influence of telopeptides, fibrils and crosslinking on physicochemical properties of Type I collagen films

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Type I collagen is widely used in various different forms for research and commercial applications. Different forms of collagen may be classified according to their source, extraction method, crosslinking and resultant ultrastructure. In this study, afibrillar and reconstituted fibrillar films, derived from acid soluble and pepsin digested Type I collagen, were analysed using Lateral Force Microscopy (LFM), Fourier Transform Infra-Red Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and enzymatic stability assays to asses the influence of telopeptides, fibrils and crosslinking. LFM proved to be a useful technique to confirm an afibrillar/fibrillar ultrastructure and to elucidate fibril diameters. FTIR has proved insensitive to ultrastructural differences involving telopeptides and fibrils. DSC results showed a significant increase in Td for crosslinked samples (+22–28°C), and demonstrated that the thermal behaviour of hydrated, afibrillar films is more akin to reconstituted fibrillar films than monomeric solutions. The enzymatic stability assay has provided new evidence to show that afibrillar films of Type I collagen can be significantly more resistant to collagenase (by up to 3.5 times), than reconstituted fibrillar films, as a direct consequence of the different spatial arrangement of collagen molecules. A novel mechanism for this phenomenon is proposed and discussed. Additionally, the presence of telopeptide regions in afibrillar tropocollagen samples has been shown to increase resistance to collagenase by greater than 3.5 times compared to counterpart afibrillar atelocollagen samples. One-factor ANOVA analysis, with Fisher’s LSD post-hoc test, confirms these key findings to be of statistical significance (P < 0.05). The profound physicochemical effects of collagen ultrastructure demonstrated in this study reiterates the need for comprehensive materials disclosure and classification when using these biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221:1–22.

    Article  CAS  PubMed  Google Scholar 

  2. Sachlos E, Gotora D, Czernuszka JT. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 2006;12:2479–87.

    Article  CAS  PubMed  Google Scholar 

  3. Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials. 2003;24:1487–97.

    Article  CAS  PubMed  Google Scholar 

  4. Wahl D, Sachlos E, Liu C, Czernuszka J. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2007;18:201–9.

    Article  CAS  PubMed  Google Scholar 

  5. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater. 2003;5:29–40.

    CAS  Google Scholar 

  6. Carmichael DJ, Lawrie RA. Bovine collagen I changes in collagen solubility with animal age. Int J Food Sci Technol. 1967;2:299–311.

    CAS  Google Scholar 

  7. Chang MC, Ikoma T, Kikuchi M, Tanaka J. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. J Mater Sci Lett. 2001;20:1199–201.

    Article  CAS  Google Scholar 

  8. Cappabianca P, Esposito F, Cavallo LM, et al. Use of equine collagen foil as dura mater substitute in endoscopic endonasal transsphenoidal surgery. Surg Neurol. 2006;65:144–8.

    Article  PubMed  Google Scholar 

  9. Spira M, Liu B, Xu Z, Harrell R, Chahadeh H. Human amnion collagen for soft tissue augmentation—biochemical characterizations and animal observations. J Biomed Mater Res. 1994;28:91–6.

    Article  CAS  PubMed  Google Scholar 

  10. Olsen D, Yang C, Bodo M, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev. 2003;55:1547–67.

    Article  CAS  PubMed  Google Scholar 

  11. George J, Onodera J, Miyata T. Biodegradable honeycomb collagen scaffold for dermal tissue engineering. J Biomed Mater Res A. 2008;87A:1103–11.

    Article  CAS  Google Scholar 

  12. Riemschneider R, Abedin MZ. Pepsin-solubilized collagen from cow placenta. Angew Makromol Chem. 1979;82:171–86.

    Article  CAS  Google Scholar 

  13. Gross J, Kirk D. The heat precipitation of collagen from neutral salt solutions: some rate-regulating factors. J Biol Chem. 1958;233:355–60.

    CAS  PubMed  Google Scholar 

  14. Steven FS. The presence of non-protein nitrogen in acetic acid-soluble calf-skin collagen. Biochem J. 1962;83:240.

    CAS  PubMed  Google Scholar 

  15. Einbinder J, Schubert M. Binding of mucopolysaccharides and dyes by collagen. J Biol Chem. 1951;188:335–41.

    CAS  PubMed  Google Scholar 

  16. Steven FS. Purification and amino acid composition of monomeric and polymeric collagens. Biochem J. 1967;104:534.

    CAS  PubMed  Google Scholar 

  17. Grant ME. Carbohydrate content of bovine collagen preparations. Biochem J. 1968;108:587.

    CAS  PubMed  Google Scholar 

  18. Eyre DR, Paz MA, Gallop PM. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717–48.

    Article  CAS  PubMed  Google Scholar 

  19. Woodley DT, Yamauchi M, Wynn KC, Mechanic G, Briggaman RA. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction. J Invest Dermatol. 1991;97:580–5.

    Article  CAS  PubMed  Google Scholar 

  20. Kadler KE, Hojima Y, Prockop DJ. Assembly of collagen fibrils de novo by cleavage of the Type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. J Biol Chem. 1987;262:15696–701.

    CAS  PubMed  Google Scholar 

  21. Gale M, Pollanen MS, Markiewicz P, Goh MC. Sequential assembly of collagen revealed by atomic force microscopy. Biophys J. 1995;68:2124–8.

    Article  CAS  PubMed  Google Scholar 

  22. Helseth DL Jr, Veis A. Collagen self-assembly in vitro. Differentiating specific telopeptide-dependent interactions using selective enzyme modification and the addition of free amino telopeptide. J Biol Chem. 1981;256:7118–28.

    CAS  PubMed  Google Scholar 

  23. Brennan M, Davison PF. Influence of the telopeptides on Type I collagen fibrillogenesis. Biopolymers. 1981;20:2195–202.

    Article  CAS  PubMed  Google Scholar 

  24. Comper WD, Veis A. The mechanism of nucleation for in vitro collagen fibril formation. Biopolymers. 1977;16:2113–31.

    Article  CAS  PubMed  Google Scholar 

  25. Leibovic SJ. Electron microscope studies of effects of endopeptidase and exopeptidase digestion on tropocollagen. Biochim Biophys Acta. 1970;214:445.

    Google Scholar 

  26. Zeugolis DI, Paul RG, Attenburrow G. Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: animal species and collagen extraction method. J Biomed Mater Res A. 2008;86A:892–904.

    Article  CAS  Google Scholar 

  27. Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004;71B:343–54.

    Article  CAS  Google Scholar 

  28. Klein AW. Tissue augmentation in clinical practice. 1st ed. New York: Marcel Dekker; 1998.

    Google Scholar 

  29. Cao H, Xu S-Y. EDC/NHS-crosslinked Type II collagen-chondroitin sulfate scaffold: characterization and in vitro evaluation. J Mater Sci Mater Med. 2008;19:567–75.

    Article  CAS  PubMed  Google Scholar 

  30. McPherson JM, Sawamura S, Armstrong R. An examination of the biologic response to injectable, glutaraldehyde cross-linked collagen implants. J Biomed Mater Res. 1986;20:93–107.

    Article  CAS  PubMed  Google Scholar 

  31. Sionkowska A, Kaminska A. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. Int J Biol Macromol. 1999;24:337–40.

    Article  CAS  PubMed  Google Scholar 

  32. Rabotyagova OS, Cebe P, Kaplan DL. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater Sci Eng C. 2008;28:1420–9.

    Article  CAS  Google Scholar 

  33. Speer DDP, Chvapil MM, Eskelson CCD, Ulreich JJ. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res. 1980;14:753–64.

    Article  CAS  PubMed  Google Scholar 

  34. Weadock KS, Miller EJ, Keuffel EL, Dunn MG. Effect of physical crosslinking methods on collagen-fiber durability in proteolytic solutions. J Biomed Mater Res. 1996;32:221–6.

    Article  CAS  PubMed  Google Scholar 

  35. Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29:1373–9.

    Article  CAS  PubMed  Google Scholar 

  36. Thompson JI, Czernuszka JT. The effect of two types of cross-linking on some mechanical properties of collagen. Bio-Med Mater Eng. 1995;5:37–48.

    CAS  Google Scholar 

  37. Angele P, Abke J, Kujat R, et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials. 2004;25:2831–41.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JM, Edwards HHL, Pereira CA, Samii SI. Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). J Mater Sci Mater Med. 1996;7:531–41.

    Article  CAS  Google Scholar 

  39. Christiansen DL, Huang EK, Silver FH. Assembly of Type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 2000;19:409–20.

    Article  CAS  PubMed  Google Scholar 

  40. Milch RA. Aqueous solution infrared spectra of collagen-reactive aldehydes. Biochim Biophys Acta. 1964;93:45–53.

    CAS  PubMed  Google Scholar 

  41. Jakobsen RJ, Brown LL, Hutson TB, Fink DJ, Veis A. Intermolecular interactions in collagen self-assembly as revealed by Fourier transform infrared spectroscopy. Science. 1983;220:1288–90.

    Article  CAS  PubMed  ADS  Google Scholar 

  42. George A, Veis A. FTIRS in water demonstrates that collagen monomers undergo a conformational transition prior to thermal self-assembly in vitro. Biochemistry. 1991;30:2372–7.

    Article  CAS  PubMed  Google Scholar 

  43. Prystupa DA, Donald AM. Infrared study of gelatin conformations in the gel and sol states. Polym Gels Networks. 1996;4:87–110.

    Article  CAS  Google Scholar 

  44. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M. Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res. 2001;16:1821–8.

    Article  CAS  PubMed  Google Scholar 

  45. Foltran I, Roveri EFBPPSN. Novel biologically inspired collagen nanofibers reconstituted by electrospinning method. Macromol Symp. 2008;269:111–8.

    Article  CAS  Google Scholar 

  46. Friess W, Lee G. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials. 1996;17:2289–94.

    Article  CAS  PubMed  Google Scholar 

  47. Kopp JJ, Bonnet MM, Renou JJP. Effect of collagen crosslinking on collagen-water interactions (a DSC investigation). Matrix. 1989;9:443–50.

    CAS  PubMed  Google Scholar 

  48. Flandin F, Buffevant C, Herbage D. A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim Biophys Acta. 1984;791:205–11.

    CAS  PubMed  Google Scholar 

  49. Ala-aho R, Kähäri V-M. Collagenases in cancer. Biochimie. 2005;87:273–86.

    Article  CAS  PubMed  Google Scholar 

  50. Chung L, Dinakarpandian D, Yoshida N, et al. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004;23:3020–30.

    Article  CAS  PubMed  Google Scholar 

  51. Tam EM, Moore TR, Butler GS, Overall CM. Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase A and MT1-MMP): the differential roles of the MMP hemopexin C domains and the MMP-2 fibronectin Type II modules in collagen triple helicase activities. J Biol Chem. 2004;279:43336–44.

    Article  CAS  PubMed  Google Scholar 

  52. von Heimburg D, Zachariah S, Kühling H, et al. Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo. Biomaterials. 2001;22:429–38.

    Article  Google Scholar 

  53. Sakai T, Gross J. Some properties of the products of reaction of tadpole collagenase with collagen. Biochemistry. 1967;6:518–28.

    Article  CAS  PubMed  Google Scholar 

  54. Yannas IV, Burke JF, Huang C, Gordon PL. Correlation of in vivo collagen degradation rate with in vitro measurements. J Biomed Mater Res. 1975;9:623–8.

    Article  CAS  PubMed  Google Scholar 

  55. Hong S, Hong S, Wallace J, Kohn D. Ultrastructural observation of electron irradiation damage of lamellar bone. J Mater Sci Mater Med. 2009;20:959–65.

    Article  CAS  PubMed  Google Scholar 

  56. Chernoff EAG, Chernoff DA. Atomic force microscope images of collagen fibers. J Vac Sci Technol A. 1992;10:596–9.

    Article  CAS  ADS  Google Scholar 

  57. Muyonga JH, Cole CGB, Duodu KG. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 2004;86:325–32.

    Article  CAS  Google Scholar 

  58. Leikina E, Mertts MV, Kuznetsova N, Leikin S. Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci USA. 2002;99:1314–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76:3243–52.

    Article  CAS  PubMed  Google Scholar 

  60. Perumal S. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Nat Acad Sci USA. 2008;105:2824.

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Netzel-Arnett S, Fields GB, Birkedal-Hansen H, Van Wart HE, Fields G. Sequence specificities of human fibroblast and neutrophil collagenases. J Biol Chem. 1991;266:6747–55.

    CAS  PubMed  Google Scholar 

  62. Leibovich SJ, Weiss JB. Failure of human rheumatoid synovial collagenase to degrade either normal or rheumatoid arthritic polymeric collagen. Biochim Biophys Acta. 1971;251:109–18.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin S. Walton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walton, R.S., Brand, D.D. & Czernuszka, J.T. Influence of telopeptides, fibrils and crosslinking on physicochemical properties of Type I collagen films. J Mater Sci: Mater Med 21, 451–461 (2010). https://doi.org/10.1007/s10856-009-3910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3910-2

Keywords

Navigation