Skip to main content
Log in

Quantitative analysis of hemoglobin content in polymeric nanoparticles as blood substitutes using Fourier transform infrared spectroscopy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Based on the penetrability of IR within the polymeric nanoparticles, a novel Fourier transform infrared spectroscopy (FTIR) method, with polyacrylonitrile (PAN) as the internal reference standard, was developed to quantify the hemoglobin (Hb) content in Hb-based polymeric nanoparticles (HbPN). The HbPN was fabricated by double emulsion method from poly(ethylene glycol)–poly(lactic acid)–poly(ethylene glycol) triblock copolymers. Depending on the characteristic un-overlapped IR absorbances at 1540 cm−1 of Hb (amide II) and at 2241 cm−1 of PAN (–C≡N), calibration equations, presenting the peak height ratio of Hb and PAN as a function of the weight ratio of Hb and PAN, were established. This new quantification method is validated and used to the determination Hb content in HbPN. Due to the good results of this calibration strategy, the proposed simple FTIR approach with minimal sample-needed and solvent-free makes it useful for routine analysis of protein content and could be also applied to any other drug/protein encapsulated particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fallon AG, Schnaare RL. Cross-linked hemoglobin as a potential membrane for an artificial red blood cell. Art Cells Blood subs and Immob Biotech. 2001;29:285–96.

    Article  CAS  Google Scholar 

  2. Chang TMS. Blood substitutes based on nanobiotechnology. Trends Biotechnol. 2006;24:372–7.

    Article  CAS  PubMed  Google Scholar 

  3. McCarron PA, Hall M. Incorporation of novel 1-alkylcarbonyloxymethyl prodrugs of 5-fluorouracil into poly(lactide-co-glycolide) nanoparticles. Int J Pharm. 2008;348:115–24.

    Article  CAS  PubMed  Google Scholar 

  4. Li FQ, Su H, Wang J, Liu JY, Zhu QG, Fei YB, et al. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Pharm. 2008;349:274–82.

    Article  CAS  PubMed  Google Scholar 

  5. Puri S, Kallinteri P, Higgins S, Hutcheon GA, Garnett MC. Drug incorporation and release of water soluble drugs from novel functionalised poly(glycerol adipate) nanoparticles. J Control Release. 2008;125:59–67.

    Article  CAS  PubMed  Google Scholar 

  6. Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym. 2008;73:44–55.

    Article  CAS  Google Scholar 

  7. Mora PT. Acid denaturation of DNA in the presence of a polyanion. Biochim Biophys Acta. 1965;109:568–77.

    Article  CAS  PubMed  Google Scholar 

  8. Favilla R, Parisoli A, Mazzini A. A igated lkaline denaturation and partial refolding of pepsin invest with DAPI as an extrinsic probe. Biophys Chem. 1997;67:75–83.

    Google Scholar 

  9. Arakawa T, Kita Y, Timasheff SN. Protein precipitation and denaturation by dimethyl sulfoxide. Biophys Chem. 2007;131:62–70.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang H, Zheng Z, Wang Z. Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib Spectros. 2008;46:1–7.

    Article  CAS  Google Scholar 

  11. Torrado G, García-Arieta A, F de los Ríos, Menéndez JC, Torrado S. Quantitative determination of dimethicone in commercial tablets and capsules by Fourier transform infrared spectroscopy and antifoaming activity test. J Pharm Biomed Anal. 1999;19:285–92.

    Google Scholar 

  12. Shin D. Spectroscopic analysis of silica soot deposited by flame hydrolysis deposition. Vib Spectrosc. 2008;46:14–21.

    Article  CAS  Google Scholar 

  13. Muller LM, Kennedy JA. Quantification of rat pre-pro-thyrotropin releasing hormone (TRH) mRNA by reverse transcription-polymerase chain reaction using external and internal standardization. J Neurosci Meth. 1996;68:269–72.

    Article  CAS  Google Scholar 

  14. Davis WM, Erickson CL, Johnston CT, Delfino JJ, Porter JE. Quantitative Fourier Transform Infrared spectroscopic investigation humic substance functional group composition. Chemosphere. 1999;38:2913–28.

    Article  CAS  Google Scholar 

  15. An S, Abdiryim T, Ding Y. A comparative study of the microemulsion and interfacial polymerization for polyindole. I Nurulla Mater Lett. 2008;62:935–8.

    Article  CAS  Google Scholar 

  16. Hamoudeh M, Fessi H, Mehier H, Faraj AA, Canet-Soulas E. Dirhenium decacarbonyl-loaded PLLA nanoparticles: influence of neutron irradiation and preliminary in vivo administration by the TMT technique. Int J Pharm. 2008;348:125–36.

    Article  CAS  PubMed  Google Scholar 

  17. Gao FP, Zhang HZ, Liu LR, Wang YS, Jiang Q, Yang XD, et al. Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates. Carbohydr Polym. 2008;71:606–13.

    Article  CAS  Google Scholar 

  18. Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007;28:354–69.

    Article  Google Scholar 

  19. Khan A. Preparation and characterization of magnetic nanoparticles embedded in microgels. Mater Lett. 2008;62:898–902.

    Article  CAS  Google Scholar 

  20. Xiao QG, Tao QG, Zou HK, Chen JF. Comparative study of solid silica nanoparticles and hollow silica nanoparticles for the immobilization of lysozyme. Chem Eng J. 2008;137:38–45.

    Article  CAS  Google Scholar 

  21. Rao NS, Dhamodaran S, Pathak AP, Kulriya PK, Mishra YK, Singh F, et al. Structural studies of Ge nanocrystals embedded in SiO2 matrix. Nucl Instrum Methods Phys Res Sect B. 2007;264:249–53.

    Article  ADS  Google Scholar 

  22. Singh SC, Gopal R. Synthesis of colloidal zinc oxide nanoparticles by pulsed laser ablation in aqueous media. Phys E. 2008;40:724–31.

    Article  CAS  Google Scholar 

  23. Zhao J, Liu CS, Yuan Y, Tao XY, Shan XQ, Sheng Y, et al. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers. Biomaterials. 2007;28:1414–22.

    Article  CAS  PubMed  Google Scholar 

  24. Guidance for Drug Research Technique 2005. National Food and Drug Administration 2006, 8 China.

  25. Marcotte L, Kegelaer G, Sandt C, Barbeau J, La Xeur M. An alternative infrared spectroscopy assay for the quantification of polysaccharides in bacterial samples. Anal Biochem. 2007;361:7–14.

    Article  CAS  PubMed  Google Scholar 

  26. Johnson PJ, Harach DJ. Quantitative multi-component analysis of copper cyanide strike solutions using partial least squares analysis of Fourier Transform-Infrared Spectra. Hydrometallurgy. 2004;74:67.

    Article  CAS  Google Scholar 

  27. Bucci R, Balestrieri F, Magrì AD, Magrì AL, Marini F. UV-vis spectrophotometric method for the quantitation of all the components of Italian general denaturant and its application to check the conformity of alcohol samples. Talanta. 2006;68:781.

    Article  CAS  PubMed  Google Scholar 

  28. Mayer-Helm B, Hofbauer L, Müller J. Method development for the determination of selected pesticides on tobacco by high-performance liquid chromatography-electrospray ionisation-tandem mass spectrometry. Talanta. 2008;74:1184.

    Article  CAS  PubMed  Google Scholar 

  29. Park TG, Yoo HS. Dexamethasone nano-aggregates composed of PEG-PLA-PEG triblock copolymers for antiproliferation of smooth muscle cells. Int J Pharm. 2006;326:169–73.

    Article  CAS  PubMed  Google Scholar 

  30. He G, Ma LL, Pan J, Venkatraman S. ABA and BAB type triblock copolymers of PEG and PLA: A comparative study of drug release properties and “stealth” particle characteristics. Int J Pharm. 2007;334:48–55.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Chen XG, Liu CS, Park HJ. Investigation of polymeric amphiphilic nanoparticles as antitumor drug carriers. J Mater Sci-Mater M. 2009;20:991–9.

    Article  CAS  Google Scholar 

  32. Lu ML, Wu DC, Guo N. Novel functionalized ternary copolymer fluorescent nanoparticles: synthesis, fluorescent characteristics and protein immobilization. J Mater Sci-Mater M. 2009;20:563–72.

    Article  CAS  Google Scholar 

  33. Coccoli V, Luciani A, Orsi S, Guarino V, Causa F, Netti PA. Engineering of poly(ε-caprolactone) microcarriers to modulate protein encapsulation capability and release kinetic. J Mater Sci-Mater M. 2008;19:1703–11.

    Article  CAS  Google Scholar 

  34. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Rel. 1998;50:31–40.

    Article  CAS  Google Scholar 

  35. Liu R, Ma GH, Wan YH, Su ZG. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method. Colloids Surf B. 2005;45:144–53.

    Article  CAS  Google Scholar 

  36. Meng FT, Ma GH, Liu YD, Qiu W, Su ZG. Microencapsulation of bovine hemoglobin with high bio-activity and high entrapment efficiency using a W/O/W double emulsion technique. Colloids Surf B. 2004;33:177–83.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National High Technology Research and Development Program of China (863 program) (No. 2004AA-302050) and from Shanghai Nanotechnology Special Foundation (No. 0452nm022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, X., Chen, L., Yuan, Y. et al. Quantitative analysis of hemoglobin content in polymeric nanoparticles as blood substitutes using Fourier transform infrared spectroscopy. J Mater Sci: Mater Med 21, 241–249 (2010). https://doi.org/10.1007/s10856-009-3864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3864-4

Keywords

Navigation