Skip to main content
Log in

Si complexes in calcium phosphate biomaterials

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silicon complexes in silicon doped calcium phosphate bioceramics have been studied using 29Si magic angle spinning nuclear magnetic resonance spectroscopy with the objective of identifying the charge compensation mechanisms of silicon dopants. Three different materials have been studied: a multiphase material composed predominantly of a silicon stabilized α-tricalcium phosphate (α-TCP) phase plus a hydroxyapatite (HA) phase, a single phase Si-HA material and a single phase silicon stabilized α-TCP material. NMR results showed that in all three materials the silicon dopants formed Q1 structures in which two silicate tetrahedra share an oxygen, creating an oxygen vacancy which compensated the substitution of two silicon for phosphorus. This finding may explain the phase evolution previously found where silicon stabilized α-TCP is found at low temperature after sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31:D37–47.

    Google Scholar 

  2. Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32:1–31.

    Article  Google Scholar 

  3. Hench L. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  4. Ducheyne P, Radin S, King L. The effect of calcium-phosphate ceramic composition and structure on in vitro behaviour. J Biomed Mater Res. 1993;27:25–34.

    Article  CAS  PubMed  Google Scholar 

  5. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and Si-substituted hydroxyapatite bioceramics. Biomaterials. 2003;24:4609–20.

    Article  CAS  PubMed  Google Scholar 

  6. Patel N, Gibson IR, Hing KA, Best SM, Revell PA, Bonfield W. A comparative study on the in vivo behaviour of hydroxyapatite and Si-substituted hydroxyapatite granules. J Mater Sci: Mater Med. 2002;13:1199–206.

    Article  CAS  Google Scholar 

  7. Carlisle EM. Silicon: an essential element for the chick. Science. 1972;178:619–21.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167:279–80.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Qiu Q, Vincent P, Lowenberg B, Sayer M, Davies JE. Bone growth on sol–gel calcium phosphate thin films in vitro. Cells Mater. 1993;3:351–60.

    CAS  Google Scholar 

  10. Davies JE, Shapiro G, Lowenberg B. Osteoclastic resorption of calcium phosphate ceramic thin films. Cells Mater. 1993;3:245–56.

    CAS  Google Scholar 

  11. Langstaff S, Sayer M, Smith TJN, Pugh SM, Hesp SAM, Thompson WT. Resorbable bioceramics based on stabilized calcium phosphates. Part I. Rational design, sample preparation and material characterization. Biomaterials. 1999;20:1727–41.

    Article  CAS  PubMed  Google Scholar 

  12. Langstaff S, Sayer M, Smith TJN, Pugh SM. Resorbable bioceramics based on stabilized calcium phosphates. Part II. Evaluation of biological response. Biomaterials. 2001;22:135–50.

    Article  CAS  PubMed  Google Scholar 

  13. Pietak AM. The role of silicon in the bioactivity of Skelite™ bioceramic. A material and biological characterization of silicon α-tricalcium phosphate based ceramics. Master’s thesis, Queen’s University; 2007.

  14. Astala R, Calderin L, Yin X, Stott MJ. Ab initio simulation of Si-doped hydroxyapatite. Chem Mater. 2006;18:413–22.

    Article  CAS  Google Scholar 

  15. Yin X, Stott MJ. Theoretical insights into bone grafting silicon-stabilized α-tricalcium phosphate. J Chem Phys. 2005;122(024709-1).

  16. Kusachi I. The structure of rankinite. Mineral J. 1975;8:38–47.

    Article  CAS  Google Scholar 

  17. Saburi S, Kusachi I, Henmi C, Kawahara A, Henmi K, Kawada I. Refinement of the structure of rankinite. Mineral J. 1976;8:240–6.

    Article  CAS  Google Scholar 

  18. Midgley CM. The crystal structure of β dicalcium silicate. Acta Crystallogr. 1952;5:307–12.

    Article  CAS  Google Scholar 

  19. Jost KH, Ziemer B, Seydel R. Redetermination of the structure of β-dicalcium silicate. Acta Crystallogr B 1977;33:1696–700.

    Article  Google Scholar 

  20. Sayer M, Stratilatov AD, Reid JW, Calderin L, Stott MJ, Yin X, et al. Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials. 2003;24:369–82.

    Article  CAS  PubMed  Google Scholar 

  21. Reid JW, Tuck L, Sayer M, Fargo K, Hendry JA. Synthesis and characterization of single-phase silicon substituted α-tricalcium phosphate. Biomaterials. 2006;27:2916–25.

    Article  CAS  PubMed  Google Scholar 

  22. McLean DA. Osteoblast response on silicon doped calcium phosphate biomaterials. Master’s thesis, Queen’s University; 2007.

  23. Cabot Corporation. 500 Commerce Dr., Aurora, IL. http://www.cabot-corp.com.

  24. Cambridge Isotope Laboratories Inc. 50 Frontage Road, Andover, MA. http://www.isotope.com.

  25. Reid JW, Fargo K, Hendry JA, Sayer M. The influence of trace magnesium content on the phase composition of silicon-stabilized calcium phosphate powders. Mater Lett. 2007;61:3851–4.

    Article  CAS  Google Scholar 

  26. Reid JW, Hendry JA. Rapid, accurate phase quantification of multiphase calcium phosphate materials using Rietveld refinement. J Appl Crystallogr. 2006;39:536–43.

    Article  CAS  Google Scholar 

  27. Mathew M, Schroeder LW, Dickens B, Brown WE. The crystal structure of α-Ca3(PO4)2. Acta Crystallogr B. 1977;33:1325–33.

    Article  Google Scholar 

  28. Sudarsanan K, Young RA. Significant precision in crystal structural details: holly springs hydroxyapatite. Acta Crystallogr B. 1968;25:1534–43.

    Google Scholar 

  29. National Institute of Standards and Technology. Standard reference material 2910. Gaithersburg, MD; 2003.

  30. SGS Minerals Service. 185 Concession St. Lakefield, ON. http://www.met.sgs.com.

  31. Acorn NMR Inc. 7670 Las Positas Rd., Livermore, CA. http://www.acornnmr.com.

  32. Mägi M, Lippmaa E, Samoson A, Engelhardt G, Grimmer AR. Solid-state high-resolution silicon-29 Chemical shifts in silicates. J Phys Chem. 1984;88:1518–22.

    Article  Google Scholar 

  33. Engelhardt G, Michel D. High-resolution solid-state NMR of silicates and zeolites. John Wiley & Sons; 1987.

  34. Stebbins JF. Mineral physics & crystallography. A handbook of physical constants, vol. 2, chapter 14. American Geophysical Union; 1995.

  35. MacKenzie KJD, Smith ME. Multinuclear solid-state NMR of inorganic materials. Oxford: Elsevier Science; 2002.

    Google Scholar 

  36. Sherriff BL, Grundy HD. Calculations of 29Si MAS NMR chemical shift from silicate mineral structure. Nature. 1988;332:819–22.

    Article  CAS  ADS  Google Scholar 

  37. Sherriff BL, Grundy HD, Hartman JS. The relationship between 29Si MAS NMR chemical shift and silicate mineral structure. Eur J Mineral. 1991;3:751–68.

    CAS  Google Scholar 

  38. Malik KMA, Jeffery JW. A re-investigation of the structure of afwillite. Acta Crystallogr B. 1976;32:475–80.

    Article  Google Scholar 

  39. Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res. 1999;44:422–8.

    Article  CAS  PubMed  Google Scholar 

  40. Leventouri Th, Bunaciu CE, Perdikatsis V. Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials. 2003;24:4205–11.

    Article  CAS  PubMed  Google Scholar 

  41. Tang XL, Xiao XF, Liu RF. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett. 2005;59:3841–6.

    Article  CAS  Google Scholar 

  42. Arcos D, Carvajal JR, Vallet-Regí M. The effect of the silicon incorporation on the hydroxylapatite structure. A neutron diffraction study. Solid State Sci. 2004;6:987–94.

    Article  CAS  ADS  Google Scholar 

  43. Tuck LE. The phase evolution and microstructure of silicon doped tricalcium phosphate. Master’s thesis, Queen’s University; 2005.

  44. Hesse KF. Refinement of the crystal structure of wollastonite-2m (parawollastonite). Zeitschrift für Kristallographie. 1984;168:93–8.

    CAS  Google Scholar 

Download references

Acknowledgements

Work supported by the NSERC of Canada and Millenium Biologix Inc. Many discussions with Joel Reid are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Stott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, P., Wu, G., Sayer, M. et al. Si complexes in calcium phosphate biomaterials. J Mater Sci: Mater Med 21, 99–108 (2010). https://doi.org/10.1007/s10856-009-3852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3852-8

Keywords

Navigation