Skip to main content
Log in

Microstructure and in vitro Bioactivity of Silicon-Substituted Hydroxyapatite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon-substituted hydroxyapatite has shown superior biological performance compared to its stoichiometric counterpart both in vitro and in vivo. In the present study, single-phase silicon-substituted hydroxyapatite was successfully synthesized by the precipitation method. Chemical composition, crystalline phase, microstructure, and morphology of the materials were characterized by XRF, XRD, FT-IR, solid-state NMR and SEM. The results showed that hydroxyapatite kept its original structure with silicon up to a level of 0.9 wt%. The precipitation method was proved to be an efficient way to synthesize single-phase silicon-substituted hydroxyapatite. Solid-state NMR combined with other techniques gave direct evidence for the isomorphous substitution of PO4 3- by SiO4 4- in the hydroxyapatite structure. Silicon-substituted hydroxyapatite showed better bioactivity than stoichiometric hydroxyapatite in the in vitro bioactivity experiment. The higher the silicon content in the hydroxyapatite structure, the better the in vitro bioactivity. The enhanced bioactivity of silicon-substituted hydroxyapatite over pure hydroxyapatite has been attributed to the effect of silicate ions in accelerating dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Biomaterials 28:4023. doi:10.1016/j.biomaterials.2007.05.003

    Article  CAS  Google Scholar 

  2. Dorozhkin SV, Epple M (2002) Angew Chem Int Ed 41:3130. doi:10.1002/1521-3773

    Article  CAS  Google Scholar 

  3. Hench LL, Wilson J (eds) (1993) An Introduction to Bioceramics, vol 1. World Scientific, Florida

    Google Scholar 

  4. Vallet-Regí M, Arcos D (2005) J Mater Chem 15:1509. doi:10.1039/b414143a

    Article  Google Scholar 

  5. Khan AF, Saleem M, Afzal A, Ali A, Khan A, Khan AR (2014) Mater Sci Eng C 35:245. doi:10.1016/j.msec.2013.11.013

    Article  CAS  Google Scholar 

  6. Gibson IR, Bonfield W (2002) J Biomed Mater Res 59:697. doi:10.1002/jbm.10044

    Article  CAS  Google Scholar 

  7. Shepherd JH, Shepherd DV, Best SM (2012) J Mater Sci Mater Med 23:2335. doi:10.1007/s10856-012-4598-2

    Article  CAS  Google Scholar 

  8. Gibson IR, Best SM, Bonfield W (1999) J Biomed Mater Res 44:422. doi:10.1002/(SICI)1097-4636

    Article  CAS  Google Scholar 

  9. Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) J Mater Sci Mater Med 13:1199. doi:10.1023/a:1021114710076

    Article  CAS  Google Scholar 

  10. Balas F, Perez-Pariente J, Vallet-Regí M (2003) J Biomed Mater Res 66A:364. doi:10.1002/jbm.a.10579

    Article  CAS  Google Scholar 

  11. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Biomaterials 24:4609. doi:10.1016/s0142-9612(03)00355-7

    Article  CAS  Google Scholar 

  12. Porter AE, Best SM, Bonfield W (2004) J Biomed Mater Res 68A:133. doi:10.1002/jbm.a.20064

    Article  CAS  Google Scholar 

  13. Porter AE, Botelho CM, Lopes MA, Santos JD, Best SM, Bonfield W (2004) J Biomed Mater Res 69A:670. doi:10.1002/jbm.a.30035

    Article  CAS  Google Scholar 

  14. Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N, Bonfield W (2006) J Biomed Mater Res 79A:723. doi:10.1002/jbm.a.30806

    Article  CAS  Google Scholar 

  15. Thian ES, Huang J, Best SM, Barber ZH, Bonfield W (2007) Mater Sci Eng C 27:251. doi:10.1016/j.msec.2006.05.016

    Article  CAS  Google Scholar 

  16. Manzano M, Lozano D, Arcos D, Portal-Nunez S, Lopez la Orden C, Esbrit P, Vallet-Regí M (2011) Acta Biomater 7:3555. doi:10.1016/j.actbio.2011.06.004

    Article  CAS  Google Scholar 

  17. Hing KA, Revell PA, Smith N, Buckland T (2006) Biomaterials 27:5014. doi:10.1016/j.biomaterials.2006.05.039

    Article  CAS  Google Scholar 

  18. Bohner M (2009) Biomaterials 30:6403. doi:10.1016/j.biomaterials.2009.08.007

    Article  CAS  Google Scholar 

  19. Thian ES, Huang J, Best SM, Barber ZH, Bonfield W (2005) Biomaterials 26:2947. doi:10.1016/j.biomaterials.2004.07.058

    Article  CAS  Google Scholar 

  20. Palard M, Combes J, Champion E, Foucaud S, Rattner A, Bernache-Assollant D (2009) Acta Biomater 5:1223. doi:10.1016/j.actbio.2008.10.016

    Article  CAS  Google Scholar 

  21. Reid JW, Pietak A, Sayer M, Dunfield D, Smith TJN (2005) Biomaterials 26:2887. doi:10.1016/j.biomaterials.2004.09.005

    Article  CAS  Google Scholar 

  22. Pietak AM, Reid JW, Sayer M (2005) Biomaterials 26:3819. doi:10.1016/j.biomaterials.2004.10.013

    Article  CAS  Google Scholar 

  23. Gomes S, Nedelec JM, Jallot E, Sheptyakov D, Renaudin G (2011) Cryst Growth Des 11:4017. doi:10.1021/cg200587s

    Article  CAS  Google Scholar 

  24. Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD (2002) J Mater Sci Mater Med 13:1123. doi:10.1023/a:1021177601899

    Article  CAS  Google Scholar 

  25. Kolodziejski W (2005). In: Klinowski J (ed) New techniques in solid-state NMR, Topics in Current Chemistry, vol 246. Springer, Berlin, pp 235–270. doi:10.1007/b98652

  26. Gasquères G, Bonhomme C, Maquet J, Babonneau F, Hayakawa S, Kanaya T, Osaka A (2008) Magn Reson Chem 46:342. doi:10.1002/mrc.2109

    Article  Google Scholar 

  27. Gillespie P, Wu G, Sayer M, Stott MJ (2010) J Mater Sci Mater Med 21:99. doi:10.1007/s10856-009-3852-8

    Article  CAS  Google Scholar 

  28. Hayakawa S, Kanaya T, Tsuru K, Shirosaki Y, Osaka A, Fujii E, Kawabata K, Gasquères G, Bonhomme C, Babonneau F, Jäger C, Kleebe HJ (2013) Acta Biomater 9:4856. doi:10.1016/j.actbio.2012.08.024

    Article  CAS  Google Scholar 

  29. Marchat D, Zymelka M, Coelho C, Gremillard L, Joly-pottuz L, Babonneau F, Esnouf C, Chevalier J, Bernache-assollant D (2013) Acta Biomater 9:6992. doi:10.1016/j.actbio.2013.03.011

    Article  CAS  Google Scholar 

  30. Tang XL, Xiao XF, Liu RF (2005) Mater Lett 59:3841. doi:10.1016/j.matlet.2005.06.060

    Article  CAS  Google Scholar 

  31. Kay MI, Young RA, Posner AS (1964) Nature 204:1050. doi:10.1038/2041050a0

    Article  CAS  Google Scholar 

  32. Kokubo T, Takadama H (2006) Biomaterials 27:2907. doi:10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  33. Bohner M, Lemaitre J (2009) Biomaterials 30:2175. doi:10.1016/j.biomaterials.2009.01.008

    Article  CAS  Google Scholar 

  34. Pan H, Zhao X, Darvell BW, Lu WW (2010) Acta Biomater 6:4181. doi:10.1016/j.actbio.2010.05.013

    Article  CAS  Google Scholar 

  35. Gibson IR, Best SM, Bonfield W (2002) J Am Ceram Soc 85:2771. doi:10.1111/j.1151-2916.2002.tb00527.x

    Article  CAS  Google Scholar 

  36. Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH (2003) Biomaterials 24:1389. doi:10.1016/s0142-9612(02)00523-9

    Article  Google Scholar 

  37. Qiu ZY, Li G, Zhang YQ, Liu J, Hu W, Ma J, Zhang SM (2012) Biomed Mater 7:045009. doi:10.1088/1748-6041/7/4/045009

    Article  CAS  Google Scholar 

  38. Tian T, Jiang D, Zhang J, Lin Q (2008) Mater Sci Eng C 28:57. doi:10.1016/j.msec.2007.10.049

    Article  CAS  Google Scholar 

  39. Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmuecker M (2011) Ceram Int 37(4):1219. doi:10.1016/j.ceramint.2010.11.044

    Article  CAS  Google Scholar 

  40. Arcos D, Rodriguez-Carvajal J, Vallet-Regí M (2004) Chem Mater 16:2300. doi:10.1021/cm035337

    Article  CAS  Google Scholar 

  41. Gibson IR, Hing KA, Revell PA, Santos JD, Best SM, Bonfield W (2002) Key Eng Mater 218-220:203. doi:10.4028/www.scientific.net/KEM.218-220.203

    Article  CAS  Google Scholar 

  42. Leventouri T, Bunaciu CE, Perdikatsis V (2003) Biomaterials 24:4205. doi:10.1016/s0142-9612(03)00333-8

    Article  CAS  Google Scholar 

  43. Palard M, Champion E, Foucaud S (2008) J Solid State Chem 181:1950. doi:10.1016/j.jssc.2008.04.027

    Article  CAS  Google Scholar 

  44. Arcos D, Rodriguez-Carvajal J, Vallet-Regí M (2004) Solid State Sci 6:987. doi:10.1016/j.solidstatesciences.2004.05.001

    Article  CAS  Google Scholar 

  45. Aguiar H, Serra J, Gonzalez P, Leon B (2009) J Non-Cryst Solids 355:475. doi:10.1016/j.jnoncrysol.2009.01.010

    Article  CAS  Google Scholar 

  46. Bianco A, Cacciotti I, Lombardi M, Montanaro L (2009) Mater Res Bull 44:345. doi:10.1016/j.materresbull.2008.05.013

    Article  CAS  Google Scholar 

  47. Sudarsanan K, Young RA (1969) Acta Crystallogr B 25:1534. doi:10.1107/s0567740869004298

    Article  CAS  Google Scholar 

  48. Hartmann P, Jäger C, Barth S, Vogel J, Meyer K (2001) J Solid State Chem 160:460. doi:10.1006/jssc.2001.9274

    Article  CAS  Google Scholar 

  49. Yu H, Zhang H, Wang X, Gu Z, Li X, Deng F (2007) J Phys Chem Solids 68:1863. doi:10.1016/j.jpcs.2007.05.020

    Article  CAS  Google Scholar 

  50. Isobe T, Nakamura S, Nemoto R, Senna M, Sfihi H (2002) J Phys Chem B 106:5169. doi:10.1021/jp0138936

    Article  CAS  Google Scholar 

  51. Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM (2005) Biomaterials 26:1317. doi:10.1016/j.biomaterials.2004.04.038

    Article  CAS  Google Scholar 

  52. Gomes S, Renaudin G, Mesbah A, Jallot E, Bonhomme C, Babonneau F, Nedelec JM (2010) Acta Biomater 6:3264. doi:10.1016/j.actbio.2010.02.034

    Article  CAS  Google Scholar 

  53. Li XW, Yasuda HY, Umakoshi Y (2006) J Mater Sci Mater Med 17:573. doi:10.1007/s10856-006-8942-2

    Article  CAS  Google Scholar 

  54. Thian ES, Huang J, Best SM, Barber ZH, Bonfield W (2006) J Biomed Mater Res 76B:326. doi:10.1002/jbm.b.30368

    Article  CAS  Google Scholar 

  55. Porter AE (2006) Micron 37:681. doi:10.1016/j.micron.2006.03.006

    Article  CAS  Google Scholar 

  56. Vandiver J, Dean D, Patel N, Botelho C, Best S, Santos JD, Lopes MA, Bonfield W, Ortiz C (2006) J Biomed Mater Res 78A:352. doi:10.1002/jbm.a.30737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaguang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Liu, K., Zhang, F. et al. Microstructure and in vitro Bioactivity of Silicon-Substituted Hydroxyapatite. Silicon 9, 543–553 (2017). https://doi.org/10.1007/s12633-015-9298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9298-3

Keywords

Navigation