Skip to main content
Log in

Biodegradablescaffolds based on chitosan: Preparation, properties, and use for the cultivation of animal cells

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The influence of the conditions of the formation of chitosan hydrogels crosslinked with glutaraldehyde (GA) or genipin (the polysaccharide molecular weight, pH level, and concentration of the chitosan solution) on the gel time and the properties of biopolymer scaffolds for tissue engineering obtained by the freeze-drying of hydrogels was studied. The resulting scaffolds had different structures (morphology, degree of anisotropy, average pore size) and moisture-retaining capacities. The cytotoxicity of biodegradable scaffolds based on chitosan with a low content of genipin and GA was studied for the first time. Using the L929 mouse fibroblasts model line, we demonstrated that scaffolds based on chitosan with a molecular weight of 320 and 190 kDa crosslinked with genipin and GA (0.005 and 0.01 mol/mol of chitosan amino groups) are biocompatible. Using confocal laser microscopy, we demonstrated that the cells are uniformly distributed in all scaffold samples and they successfully grew and proliferated when cultured in vitro for 4 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer, R. and Vacanti, J.P., Tissue Eng. Sci., 1993, vol. 260, no. 5110, pp. 920–926.

    CAS  Google Scholar 

  2. Dhandayuthapani, B., Yoshida, Y., Maekawa, T., and Kumar, D.S., Int. J. Polym. Sci., 2011, vol. 2011, pp. 89–108.

    Article  Google Scholar 

  3. Cheung, H.Y., Lau, K.T., Lu, T.P., and Hui, D., Composites Part B: Eng., 2007, vol. 38, no. 3, pp. 291–300.

    Article  Google Scholar 

  4. De Isla, N., Huseltein, C., Jessel, N., Pinzano, A., Decot, V., Magdalou, J., and Stoltz, J.F., Bio-Med. Mater. Eng., 2010, vol. 20, nos. 3–4, pp. 127–133.

    Google Scholar 

  5. Nettles, D.L., Elder, S.H., and Gilbert, J.A., Tissue Eng., 2002, vol. 8, no. 6, pp. 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  6. Hu, Y., Grainger, D.W., Winn, S.R., and Hollinger, J.O., J. Biomed. Mater. Res., 2002, vol. 59, pp. 563–572.

    Article  CAS  PubMed  Google Scholar 

  7. Place, E.S., George, J.H., Williams, C.K., and Stevens, M.M., Chem. Soc. Rev., 2009, vol. 38, no. 4, pp. 1139–1151.

    Article  CAS  PubMed  Google Scholar 

  8. Gunatillake, P.A. and Adhikari, R., Eur. Cell. Mater, 2003, vol. 5, no. 1, pp. 1–16.

    CAS  PubMed  Google Scholar 

  9. Yoshimoto, H., Shin, Y.M., Terai, H., and Vacanti, J.P., Biomaterials, 2003, vol. 24, no. 12, pp. 2077–2082.

    Article  CAS  PubMed  Google Scholar 

  10. Ma, P.X., Mater. Today, 2004, vol. 7, no. 5, pp. 30–40.

    Article  CAS  Google Scholar 

  11. Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T., and Takakura, Y., Biomaterials, 2005, vol. 26, no. 20, pp. 4273–4279.

    Article  CAS  PubMed  Google Scholar 

  12. Sahoo, S.K., Panda, A.K., and Labhasetwar, V., Biomacromolecules, 2005, vol. 6, no. 2, pp. 1132–1139.

    Article  CAS  PubMed  Google Scholar 

  13. Zhong, S., Teo, W.E., Zhu, X., Beuerman, R.W., Ramakrishna, S., and Yung, L.Y.L., J. Biomed. Mater. Res., 2006, vol. 79, no. 3, pp. 456–463.

    Article  Google Scholar 

  14. Li, Z. and Zhang, M., J. Biomed. Mater. Res., 2005, vol. 75, no. 2, pp. 485–493.

    Article  Google Scholar 

  15. Suh, J.K.F. and Matthew, H.W.T., Biomaterials, 2000, vol. 21, no. 24, pp. 2589–2598.

    Article  CAS  PubMed  Google Scholar 

  16. Yannas, I.V., Tzeranis, D.S., Harley, B.A., and So, P.T.C., Phil. Trans. R. Soc. A, 2010, vol. 368, pp. 2123–2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sommar, P., Pettersson, S., Ness, C., Johnson, H., Kratz, G., and Junker, J.P., J. Plast. Reconstr. Aesthet. Sur., 2010, vol. 63, pp. 1036–1046.

    Article  Google Scholar 

  18. Shi, X., Sitharaman, B., Pham, Q.P., Liang, F., Wu, K., Billups, W.E., and Mikos, A.G., Biomaterials, 2007, vol. 28, no. 28, pp. 4078–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramay, H.R. and Zhang, M., Biomaterials, 2004, vol. 25, no. 21, pp. 5171–5180.

    Article  CAS  PubMed  Google Scholar 

  20. Foroughi, M.R., Karbasi, S., and Kahrizsangi, R.E., J. Porous Mater., 2012, vol. 19, no. 5, pp.667–675.

    Google Scholar 

  21. Novochadov, V.V., Vestn. Volgograd. Gos. Univ., Ser. 11: Estestv. Nauki, 2013, no. 1, pp. 19–28.

    Google Scholar 

  22. Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow Tsentr Bioinzheneriya RAN, 2013.

  23. Rinaudo, M., Prog. Polym. Sci., 2006, vol. 31, pp. 603–632.

    Article  CAS  Google Scholar 

  24. Kumar, M.N.R., React. Funct. Polym., 2000, vol. 46, no. 1, pp. 1–27.

    Article  CAS  Google Scholar 

  25. Kim, I.Y., Seo, S.J., Moon, H.S., Yoo, M.K., Park, I.Y., Kim, B.C., and Cho, C.S., Biotechnol. Adv., 2008, no. 26, pp. 1–21.

    Article  CAS  PubMed  Google Scholar 

  26. Madihally, S.V. and Matthew, H.W., Biomaterials, 1999, vol. 20, no. 12, pp. 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  27. Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A., and Gurny, R., Eur. J. Pharm. Biopharm., 2004, no. 57, pp. 19–34.

    Article  CAS  PubMed  Google Scholar 

  28. Prashanth, K.V.H. and Tharanathan, R.N., Carbohydr. Res., 2006, vol. 341, no. 1, pp. 169–173.

    Article  CAS  Google Scholar 

  29. Beppu, M.M., Vieira, R.S., Aimoli, C.G., and Santana, C.C., J. Membr. Sci., 2007, vol. 301, no. 1, pp. 126–130.

    Article  CAS  Google Scholar 

  30. Kildeeva, N.R., Perminov, P.A., Vladimirov, L.V., Novikov, V.V., and Mikhailov, S.N., Russ. J. Bioorg. Chem., 2009, vol. 35, no. 3, pp. 360–369.

    Article  CAS  Google Scholar 

  31. Hoffmann, B., Seitz, D., Mencke, A., Kokott, A., and Ziegler, G., J. Mater. Sci.: Mater. Med., 2009, no. 20, pp. 1495–1503.

    CAS  Google Scholar 

  32. Ji, C., Khademhosseini, A., and Dehghani, F., Biomaterials, 2011, vol. 32, no. 36, pp. 9719–9729.

    Article  CAS  PubMed  Google Scholar 

  33. Lai, J.-Y., Li, Y.-T., and Wang, T.-P., Int. J. Mol. Sci., 2010, vol. 11, no. 12, pp. 5256–5272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keelara, V.H. and Rudrapatnam, N.T., Carbohydr. Res., 2006, no. 341, pp. 169–173.

    Article  Google Scholar 

  35. Pujana, M.A., Perez-Alvarez, L., Iturbe, L.C.C., and Katime, I., Carbohydr. Res., 2013, vol. 94, no. 2, pp. 836–842.

    Article  Google Scholar 

  36. Kil’deeva, N.R. and Mikhailov, S.N., in Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Tsentr Bioinzheneriya RAN, 2013, pp. 271–307.

    Google Scholar 

  37. Roughley, P., Hoemann, C., Desrosiers, E., Mwale, F., Antoniou, J., and Alini, M., Biomaterials, 2006, vol. 27, no. 3, pp. 388–396.

    Article  CAS  PubMed  Google Scholar 

  38. Muzzarelli, R.A., Carbohydr. Res., 2009, vol. 77, no. 1, pp. 1–9.

    Article  CAS  Google Scholar 

  39. Sampaio, G.Y.H., Fook, A.C.B.M., Fideles, T.B., Cavalcanti, M.E.R.R.M., and Fook, M.V.L., Mater. Sci. Forum, 2015, no. 805, pp. 116–121.

    Article  CAS  Google Scholar 

  40. Kumari, R. and Dutta, P.K., Int. J. Biol. Macromol., 2010, vol. 46, no. 2, pp. 261–266.

    Article  PubMed  Google Scholar 

  41. Mosmann, T., J. Immunol. Methods, 1983, no. 65, pp. 55–63.

    Article  CAS  PubMed  Google Scholar 

  42. Mikhailov, S.N., Zakharova, A.N., Drenichev, M.S., Ershov, A.V., Kasatkina, M.A., Vladimirov, L.V., Novikov, V.V., and Kildeeva, N.R., Nucleosides Nucleotides Nucleic Acids, 2016, vol. 35, no. 3, pp.114–129.

    Article  CAS  PubMed  Google Scholar 

  43. Butler, M.F., Ng, Y.-F., and Pudney, P.D., J. Polym. Sci. Part A: Pol. Chem., 2003, vol. 41, pp. 3941–3953.

    Article  CAS  Google Scholar 

  44. Tsai, C.C., Huang, R.N., Sung, H.W., and Liang, H.C., J. Biomed. Mater. Res., 2000, vol. 52, no. 1, pp. 58–65.

    Article  CAS  PubMed  Google Scholar 

  45. Mi, F.L., Tan, Y.C., Liang, H.F., and Sung, H.W., Biomaterials, 2002, vol. 23, no. 1, pp. 181–191.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Kil’deeva.

Additional information

Original Russian Text © N.R. Kil’deeva, M.A. Kasatkina, M.G. Drozdova, T.S. Demina, S.A. Uspenskii, S.N. Mikhailov, E.A. Markvicheva, 2016, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2016, Vol. 52, No. 5, pp. 504–512.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kil’deeva, N.R., Kasatkina, M.A., Drozdova, M.G. et al. Biodegradablescaffolds based on chitosan: Preparation, properties, and use for the cultivation of animal cells. Appl Biochem Microbiol 52, 515–524 (2016). https://doi.org/10.1134/S0003683816050094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816050094

Keywords

Navigation