Skip to main content
Log in

Synthesis of Hydroxylapatite Substituted with REE Ions (La3+ and Y3+): Composition, Structure, and Properties

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Substituted hydroxylapatites (HAs) containing various La3+ or Y3+ percentages were prepared. X‑ray powder diffraction, Four-transform IR spectroscopy, and optical spectroscopy verified the formation of substituted hydroxylapatites (La–HA and Y–HA). Inductively coupled plasma atomic emission spectrometry (ICP–AES) verified the presence of REE ions in the solids. Changes in the unit cell parameters of the prepared phases indicated that the REE ions substituted for Ca2+ ions in the hydroxylapatite structure. The lanthanum or yttrium percentage in precipitates increased in response to increasing REE salt concentration (within 1–5 wt %) in the initial solution as shown by chemical analysis; this brought about a decrease in the ratio Ca/P compared to the stoichiometric ratio (1.67). The solubility of the synthesized samples was studied, and it appeared that the cation-substituted hydroxylapatites were less soluble than undoped HA was.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Kulwinder, K. J. Singh, V. Anand, et al., Ceram. Int. 43, 10097 (2017). https://doi.org/10.1016/j.ceramint.2017.05.029

    Article  CAS  Google Scholar 

  2. K. Wieszczycka and K. Staszak, Wózniak-Budych, et al., Coord. Chem. Rev. 388, 248 (2019). https://doi.org/10.1016/j.ccr.2019.06.017

    Article  CAS  Google Scholar 

  3. A. Szcześ, L. Hołysz, and E. Chibowski, Adv. Colloid Interface Sci. 249, 321 (2017). https://doi.org/10.1016/j.cis.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  4. A. D. Furasova, A. F. Fakhardo, V. A. Milichkoet, et al., Colloids Surf., B: Biointerfaces 154, 21 (2017). https://doi.org/10.1016/j.colsurfb.2017.02.029

    Article  CAS  PubMed  Google Scholar 

  5. A. A. Sherstiuk, S. A. Tsymbal, A. F. Fakhardo, et al., ACS Biomater. Sci. Eng. 7, 5633 (2021). https://doi.org/10.1021/acsbimaterials.1c00973

    Article  CAS  PubMed  Google Scholar 

  6. V. O. Vasylechko, G. V. Gryshchouk, V. P. Zakordonskiy, et al., Talanta 162, 1 (2017). https://doi.org/10.1016/j.talanta.2017.06.052

    Article  CAS  Google Scholar 

  7. C. Shen, T. Yan, Y. Wang, et al., J. Lumin. 10, 1 (2017). https://doi.org/10.1016/j.jlumin.2016.12.018

    Article  CAS  Google Scholar 

  8. C. Boronat, T. Rivera, J. Garcia-Guinea, et al., Radiat. Phys. Chem. 130, 236 (2017). https://doi.org/10.1016/j.radphyschem.2016.09.005

    Article  CAS  Google Scholar 

  9. S. George, D. Mehta, and V. K. Saharan, Rev. Chem. Eng. 36, 369 (2020). https://doi.org/10.1515/revce-2017-0101

    Article  CAS  Google Scholar 

  10. T. R. Machadoa, J. C. Sczancoskia, H. Beltran-Mirb, et al., Ceram. Int. 44, 236 (2018). https://doi.org/10.1016/j.ceramint.2017.09.164

    Article  CAS  Google Scholar 

  11. P. E. Kazin, M. A. Pogosova, L. A. Trusov, et al., J. Solid State Chem. 237, 349 (2016). https://doi.org/10.1016/j.jssc.2016.03.004

    Article  CAS  Google Scholar 

  12. N. Nasiri and C. Clarke, Biosensors 9, 43 (2019). https://doi.org/10.3390/bios9010043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. G. A. Shashkina and V. F. Sorets, Med. Ekstremal. Sit. 1, 101 (2017).

    Google Scholar 

  14. Ma Guoqing, Mater. Sci. Eng. 688, 1 (2018). https://doi.org/10.1088/1757-899X/688/3/033057

    Article  Google Scholar 

  15. X. Zheng, M. Liu, J. Hui, et al., Phys. Chem. Chem. Phys. 17, P. 20301 (2015). https://doi.org/10.1039/c5cp01845e

    Article  CAS  PubMed  Google Scholar 

  16. L. I. Ardanova, E. I. Get’man, S. N. Loboda, et al., Inorg. Chem. 49, 10687 (2010). https://doi.org/10.1021/ic1015127

    Article  CAS  PubMed  Google Scholar 

  17. I. A. Neacsu, A. E. Stoica, B. S. Vasile, et al., Nanomaterials 9, 239 (2019). https://doi.org/10.3390/nano9020239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu. O. Nikitina, N. V. Petrakova, A. Yu. Demina, et al., Russ. J. Inorg. Chem. 66, 1067 (2021). https://doi.org/10.31857/S0044457X21080171

    Article  CAS  Google Scholar 

  19. J. F. Cawthray, A. L. Creagh, C. A. Haynes, et al., Inorg. Chem. 54, 1440 (2015). https://doi.org/10.1021/ic502425e

    Article  CAS  PubMed  Google Scholar 

  20. G. D. Sathishkumar and A. S. Karthika, et al., Ind. Eng. Chem. Res. 53, 20145 (2014). https://doi.org/10.1021/ie504387k

    Article  CAS  Google Scholar 

  21. A. P. Solonenko and O. A. Golovanova, Russ. J. Inorg. Chem. 59, 1228 (2014). https://doi.org/10.1134/S0036023614110230

    Article  CAS  Google Scholar 

  22. Yu. K. Egorov-Tismenko, Crystallography and Crystal Chemistry (Moscow, 2014) [in Russian].

    Google Scholar 

  23. M. Thompson and J. N. Walsh, A Handbook of Inductively Coupled Plasma Spectrometry (Blackie, Glasgow and London, 1983).

    Google Scholar 

  24. A. A. Tsyganova and O. A. Golovanova, Inorg. Mater. 55, 1156 (2019). https://doi.org/10.1134/S0020168519110141

    Article  Google Scholar 

  25. V. S. Urusov and N. N. Eremin, Crystal Chemistry (Izd-vo Mosk. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  26. T. Tite, A. C. Popa, L. M. Balescu, et al., Materials 11, 2081 (2018). https://doi.org/10.3390/ma11112081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O. A. Golovanova, Russ. J. Inorg. Chem. 65, 305 (2020). https://doi.org/10.1134/S0036023620030043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Golovanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovanova, O.A. Synthesis of Hydroxylapatite Substituted with REE Ions (La3+ and Y3+): Composition, Structure, and Properties. Russ. J. Inorg. Chem. 68, 334–341 (2023). https://doi.org/10.1134/S0036023622700139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622700139

Keywords:

Navigation