Skip to main content
Log in

A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Unique elastomeric and biocompatible scaffolds were produced by the polyesterification of poly(vinyl alcohol) (PVA) and citric acid via a simple polycondensation reaction. The physicochemical characterization of the materials was done by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), mechanical and surface property analyses. The materials are hydrophilic and have viscoelastic nature. Biodegradable, non-cytotoxic materials that can be tailored into 3D scaffolds could be prepared in an inexpensive manner. This polyester has potential implications in vascular tissue engineering application as a biodegradable elastomeric scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. American Heart Association, International Cardiovascular Disease Statistics, Statistical Fact Sheet (2007)

  2. R. Calne, Philos. Trans. R. Soc. B 360, 1797 (2005)

    Article  PubMed  Google Scholar 

  3. H. Van Damme, M. Deprez, E. Creemers, R. Limet, Acta Chir. Belg. 105, 249 (2005)

    PubMed  Google Scholar 

  4. H.P. Greisler, K.A. joyce, D.U. Kim, S.M. Pham, A. Berceli, H.S. Borovetz, J. Biomed. Mater. Res. 26(11), 1449 (2004)

    Article  Google Scholar 

  5. A. Tiwari, H. Salacinski, A.M. Seifalian, G. Hamilton, Cardiovasc. Surg. 10(3), 191 (2002)

    Article  Google Scholar 

  6. R. Langer, J.P. Vacanti, Science 260, 920 (1993)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Y. Ikada, J. R. Soc. Interface 3, 589 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. C.A. Vacanti, J.P. Vacanti, Orthop. Clin. North Am. 31, 351 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. P.X. Ma, R. Langer, Mater. Res. Soc. Symp. Proc. 394, 99 (1995)

    CAS  Google Scholar 

  10. W. Mark, J.C. Nicholas, J. Biomater. Appl. 21, 395 (2007)

    Google Scholar 

  11. J.Y. Yoo, J.M. Kim, K.S. Seo, Y.K. Jeong, H.B. Lee, G. Khang, Biomed. Mater. Eng. 15, 279 (2005)

    CAS  PubMed  Google Scholar 

  12. H.P. Greisler, D.U. Kim, J.B. Price, A.B. Voorhees, Arch. Surg. 120, 315–323 (1985)

    CAS  PubMed  Google Scholar 

  13. R.H. Li, M. White, S. Williams, T.J. Hazlett, Biomater. Sci. Polym. Ed. 9, 239 (1998)

    Article  CAS  Google Scholar 

  14. S.K. Mallapragada, S. Mccarthy-Schroeder, in Handbook of Pharmaceutical Controlled Release Technology, ed. by D.L. Wise (Dekker, New York, 2000), p. 31

  15. K. Burczak, T. Fujisato, M. Hatada, Y. Ikada, Biomaterials 15(3), 231 (1994)

    Article  CAS  PubMed  Google Scholar 

  16. S.H. Hyon, W.I. Cha, Y. Ikada, M. Kita, Y. Ogura, Y. Honda, J. Biomater. Sci. Polym. Ed. 5(5), 397 (1994)

    Article  CAS  Google Scholar 

  17. B.A.H. Smith, M.V. Sefton, J. Biomed. Mater. Res. 22, 673 (1988)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. K. Burczak, E. Gamian, A. Kochman, Biomaterials 17, 2351 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Grisel, L. Saavedra, M. Mateescu, A. Diana, A. Bates, F. Devisee, J. Biomed. Mater. Res. 66, 562 (2003)

    Google Scholar 

  20. C.T. Lee, P.H. Kung, Y.D. Lee, Carbohydr. Polym. 16(3), 348 (2005)

    Article  Google Scholar 

  21. R.H. Schmedlen, K.S. Masters, J.L. West, Biomaterials 23(22), 4325 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. C.R. Nuttelman, S.M. Henry, K.S. Anseth, Biomaterials 23(17), 3617 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. S.H. Oh, S.G. Kang, E.S. Kim, S.H. Cho, J.H. Lee, Biomaterials 24(22), 4011 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. N. Mohan, P.D. Nair, J. Biomed. Mater. Res. Part B. E-publication. Ahead of Print (2007)

  25. R.E. Shariatpanahi, F. Orang, S.H. Emami, T. Naimi, J. Biomater. Sci. Polym. Ed. 17(6), 659 (2006)

    Article  Google Scholar 

  26. S.J. Carlotti, O. Giani-Beaune, F. Schue, J. Appl. Polym. Sci. 80, 142 (2001)

    Article  CAS  Google Scholar 

  27. M. Spinu. U.S. Patent 00936, 1994

  28. M.S. Conte, FASEB J. 12, 43 (1998)

    CAS  PubMed  MathSciNet  Google Scholar 

  29. Y.C. Kuo, S.N. Leou, Biotechnol. Prog. 22(6), 1664 (2006)

    Google Scholar 

  30. A.G. Mikos, G. Sarakinos, J.P. Vacanti, R.S. Langer, L.G. Cima., U.S. Patent 5,514,378, 7 May 1996

  31. ISO Document 10993-5, Biological compatibility of medical devices. Part 5. International Organization of Standardisation, Geneva (1999)

  32. G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato, Biomaterials 14(5), 359 (1993)

    Article  CAS  PubMed  Google Scholar 

  33. E.A. Jaffe, R.L. Nachman, C.G. Becker, C.R. Miinick, J. Clin. Invest. 52, 2745 (1973)

    Article  CAS  Google Scholar 

  34. M.C. Lee, R.C. Haut, J. Biomech. 25, 925 (1992)

    Article  CAS  PubMed  Google Scholar 

  35. J.B. Leach, J.B. Wolinsky, P.J. Stone, J.Y. Wong, Acta Biomater. 1, 155 (2005)

    Article  PubMed  Google Scholar 

  36. P.B. Van Wachem, T. Bengeling, J. Feijein, A. Bantjes, J.P. Detmers, W.G. Aken, Biomaterials 6, 403 (1985)

    Article  PubMed  Google Scholar 

  37. T.G. Van Kooten, J.M. Schakenraad, H.C. Van der Mei, H.J. Busscher, Bomaterials 13, 897 (1993)

    Article  Google Scholar 

  38. M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrangr, M.F. Sigot-Luizard, J. Bomed. Mater. Res. 36, 99 (1997)

    Article  CAS  Google Scholar 

  39. D.H. Lewis, in Biodegradable Polymers as Drug Delivery Systems, ed. by M. Chasin, R Langer (Marcel Dekker, New York, 1990) p. 1

Download references

Acknowledgements

The authors acknowledge the funding from the Department of Biotechnology, Govt. of India and the Director and Head, BMT Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, India for their immense support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabha D. Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, L.V., Arun, U., Remya, S. et al. A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering. J Mater Sci: Mater Med 20 (Suppl 1), 259–269 (2009). https://doi.org/10.1007/s10856-008-3599-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3599-7

Keywords

Navigation