Skip to main content
Log in

Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials

  • Original Paper
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Implant-associated infections can cause serious complications including osteomyelitis and soft tissue damage, and are a great problem due to the emergence of antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). In some cases, antibiotic-loaded beads which release the antibiotic locally have been used, however such systems may lead to the development of antibiotic-resistant bacteria, as seen with gentamicin-loaded beads. Hence modifying the actual metal implant surface to inhibit or reduce initial bacterial adhesion may be an alternative option. This study describes the visualisation and quantification of S. aureus adhering to standard micro-rough ‘commercially pure’ titanium (TS) and Ti-6Al-7Nb (NS) surfaces, electropolished titanium (TE) and Ti-6Al-7Nb (NE) surfaces, and standard electropolished stainless steel (SS). Qualitative and quantitative results of S. aureus on the different surfaces correlated with each other, and showed significantly more live bacteria on NS than on the other surfaces, whilst there was no significant difference between the amount of bacteria on TS, TE, NE and SS surfaces. The results showed a significant decrease in the amount of bacteria adhering to the NE compared to standard NS surfaces. Such an observation suggests that the NS surface encouraged S. aureus adhesion, and could lead to higher infection rates in vivo. Hence electropolishing Ti-6Al-7Nb surfaces could be advantageous in osteosynthesis areas in minimising bacterial adhesion and lowering the rate of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. KHATOD, M. J. BOTTE, D. B. HOYT, R. S. MEYER, J. M. SMITH and W. H. AKESON, J. Trauma 55 (2003) 949

    Article  Google Scholar 

  2. S. E. CRAMTON, C. GERKE, N. F. SCHNELL, W. W. NICHOLS and F. GOTZ, Infect. Immun. 67 (1999) 5427

    CAS  Google Scholar 

  3. P. FRANCOIS, P. VAUDAUX, N. NURDIN, H. J. MATHIEU, P. DESCOUTS and D. P. LEW, Biomaterials 17 (1996) 667

    Article  CAS  Google Scholar 

  4. D. J. STICKLER and R. J. C. MCLEAN, Cells Mater. 5 (1995) 167

    Google Scholar 

  5. S. ARENS, U. SCHLEGEL, G. PRINTZEN, W. J. ZIEGLER, S. M. PERREN and M. HANSIS, J. Bone Joint Surg. Br. 78 (1996) 647

    CAS  Google Scholar 

  6. C. C. CHANG and K. MERRIT, J. Orthop. Res. 12 (1994) 526

    Article  CAS  Google Scholar 

  7. S. PERREN Eur. Cell Mater. 1 (2001) 2

    Google Scholar 

  8. G. A. MELCHER, B. CLAUDI, U. SCHLEGEL, S. M. PERREN, G. PRINTZEN and J. MUNZINGER, J. Bone Joint Surg. Br. 76 (1994) 955

    CAS  Google Scholar 

  9. A. GRISTINA, C. HOBGOOD, L. WEBB and Q. MYRVIK, Biomaterials 8 (1987) 423

    Article  CAS  Google Scholar 

  10. S.C. WOODWARD and T. N. SALTHOUSE, in “Handbook of Biomaterial Evaluation” (Collier Macmillan Pub, London, 1986) p. 364

  11. D.O. MEREDITH, L. ESCHBACH, M. RIEHLE, A. S. G. CURTIS and R. G. RICHARDS, J Biomed Mater Res 75 (2005) 541

    Article  CAS  Google Scholar 

  12. M. DELMI, P. VAUDAUX, D. P. LEW and H. VASEY, J. Orthop. Res. 12 (1994) 432

    Article  CAS  Google Scholar 

  13. K. Y. HA, Y. G. CHUNG and S. J. RYOO, Spine 30 (2005) 38

    Article  Google Scholar 

  14. E. GRACIA, A. FERNANDEZ, P. CONCHELLO, A. LACLERIGA, L. PANIAGUA, F. SERAL and B. AMORENA, Int. Orthop. 21 (1997) 46

    Article  CAS  Google Scholar 

  15. J.A. DISEGI, in “Titanum–6% Aluminium–7% Niobium Implant material” (AO Technical Commission, 1993)

  16. R.P. CLIFFORD, in “AO Principles of Fracture Management” (AO Publishing, Thieme-Verlag, Stuttgart, 2000) p. 617

  17. C. M. COURT-BROWN, J. F. KEATING and M. M. MCQUEEN, J. Bone Joint Surg. Br. 74 (1992) 770

    CAS  Google Scholar 

  18. D. J. MAURER, R. L. MERKOW and R. B. GUSTILO, J. Bone Joint Surg. Am. 71 (1989) 835

    CAS  Google Scholar 

  19. EUROPEAN ANTIMICROBIAL RESISTANCE SURVEILLANCE SYSTEM ANNUAL REPORT (2002).

  20. F. D. LOWY, N. Engl. J. Med. 339 (1998) 520

    Google Scholar 

  21. J.A. DISEGI, in “Wrought 18% Chromium–14% Nickel–2.5% Molybdenum Stainless Steel Implant Material” (AO Technical Commission, 1998).

  22. D. BRUNETTE, P. TENGVALL, M. TEXTOR and P. THOMSEN, in “Titanium in Medicine”(Springer-Verlag, Berlin Heidelberg New York, 2001)

  23. R. LANGE, F. LUTHEN, U. BECK, J. RYCHLY, A. BAUMANN, and B. NEBE, Biomol. Eng. 19 (2002) 255

    Article  CAS  Google Scholar 

  24. L. G. HARRIS, S. TOSATTI, M. WIELAND, M. TEXTOR and R. G. RICHARDS, Biomaterials 25 (2004) 4135

    Article  CAS  Google Scholar 

  25. M. QUIRYNEN and C. M. BOLLEN, J. Clin. Periodontol. 22 (1995) 1

    Article  CAS  Google Scholar 

  26. C. C. VERHEYEN, W. J. DHERT, J. M. BLIECK-HOGERVORST, T. J. VAN DER REIJDEN, P. L. PETIT and K. DE GROOT, Biomaterials 14 (1993) 383

    Article  CAS  Google Scholar 

  27. M. LUCKE, G. SCHMIDMAIER, S. SADONI, B. WILDEMANN, R. SCHILLER, N. P. HAAS and M. RASCHKE, Bone 32 (2003) 521

    Article  CAS  Google Scholar 

  28. J. S. PRICE, A. F. TENCER, D. M. ARM and G. A. BOHACH, J. Biomed. Mater. Res. 30 (1996) 281

    Article  CAS  Google Scholar 

  29. P. VAUDAUX, P. FRANCOIS, B. BERGER-BACHI and D. P. LEW, J. Antimicrob. Chemother. 47 (2001) 163

    Article  CAS  Google Scholar 

  30. S. M. TAMBE, L. SAMPATH and S. M. MODAK, J. Antimicrob. Chemother. 47 (2001) 589

    Article  CAS  Google Scholar 

  31. C. SITTIG, M. TEXTOR, N. D. SPENCER, M. WIELAND and P. H. VALLOTTON, J. Mater. Sci. Mater. Med. 10 (1999) 35

    Article  CAS  Google Scholar 

  32. J. LAUSMAA, in “Titanium in Medicine” (Springer-Verlag, Berlin, 2001) p. 231

  33. C. SITTIG, G. HAHNER, A. MARTI, M. TEXTOR, N. D. SPENCER and R. HAUERT, J. Mater. Sci. Mater. Med. 10 (1999) 191

    Article  CAS  Google Scholar 

  34. B. J. GABRIEL, J. GOLD, A. G. GRISTINA, B. KASEMO, J. LAUSMAA, C. HARRER and Q. N. MYRVIK, Biomaterials 15 (1994) 628

    Article  CAS  Google Scholar 

  35. R. BOS, H. C. VAN DER MEI and H. J. BUSSCHER, FEMS Microbiol. Rev. 23 (1999) 179

    Article  CAS  Google Scholar 

  36. J. TSIBOUKLIS, M. STONE, A. A. THORPE, P. GRAHAM, V. PETERS, R. HEERLIEN, J. R. SMITH, K. L. GREEN and T. G. NEVELL, Biomaterials 20 (1999) 1229

    Article  CAS  Google Scholar 

  37. H.J. BUSSHER, A. W. J. VAN PELT, P. DE BOER, H. P. DE JONG and J. ARENDS, Colloids Surf. 9 (1984) 319

    Article  Google Scholar 

  38. C. H. PEREIRA DA SILVA, G. M. VIDIGAL, M. DE UZEDA and G. DE ALMEIDA SOARES, Implant Dent. 14 (2005) 88

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Robert Mathys Foundation (RMS), Switzerland for the surfaces, and to Dr Vinzenz Frauchiger (RMS) for the XPS analysis of the surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Llinos G. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, L.G., Meredith, D.O., Eschbach, L. et al. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials. J Mater Sci: Mater Med 18, 1151–1156 (2007). https://doi.org/10.1007/s10856-007-0143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-0143-0

Keywords

Navigation