Skip to main content
Log in

A Comparison of Bacterial Adhesion and Biofilm Formation on Commonly Used Orthopaedic Metal Implant Materials: An In vitro Study

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Bacterial adherence and biofilm formation on the surface of biomaterials can often lead to implant-related infections, which may vary depending on the species of microorganisms, type of biomaterial used, and physical characteristics of implant surfaces. However, there are limited studies specifically comparing biofilm formation between commonly used metallic orthopaedic implant materials and different bacterial strains. This in vitro study is to evaluate the ability of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa to adhere to and to form biofilms on the surface of five orthopaedic biomaterials, viz., cobalt and chromium, highly cross-linked polyethylene, stainless steel, trabecular metal, and titanium alloy.

Materials and Methods

Bacterial adherence and bacterial biofilm-formation assays were performed by culturing S. aureus ATCC 29213, S. epidermidis ATCC 35984, E. coli ATCC 35218, K. pneumoniae ATCC 700603, and P. aeruginosa ATCC 27853 for 48 h on five different biomaterials. Quantitative bacterial adherence and biofilm formation were analyzed with a scanning electron microscope.

Results

The highest level of adherence was observed on highly cross-linked polyethylene, followed by titanium, stainless steel, and trabecular metal, with the lowest occurring on the cobalt-chromium alloy. Among the bacterial strains tested, the ability for high adherence was observed with S. epidermidis and K. pneumoniae followed by P. aeruginosa and E. coli, whereas S. aureus showed the least adherence.

Conclusion

Cobalt-chromium was observed to have the lowest proclivity towards bacterial adherence compared to the other biomaterials tested. However, bacterial adhesion occurred with all the materials. Hence, it is necessary to further evaluate newer biomaterials that are resistant to bacterial adherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gristina AG, Shibata Y, Giridhar G, Kreger A, Myrvik QN. The glycocalyx, biofilm, microbes, and resistant infection. Semin Arthroplasty 1994;5:160–70.

    CAS  PubMed  Google Scholar 

  2. Gristina AG. Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 1987;237:1588–95.

    Article  CAS  PubMed  Google Scholar 

  3. Gristina AG, Naylor P, Myrvik Q. Infections from biomaterials and implants: A race for the surface. Med Prog Technol 1988;14:205–24.

    PubMed  Google Scholar 

  4. Jämsen E, Furnes O, Engesaeter LB, Konttinen YT, Odgaard A, Stefánsdóttir A, et al. Prevention of deep infection in joint replacement surgery. Acta Orthop 2010;81:660–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ, et al. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand 2001;72:557–71.

    Article  PubMed  Google Scholar 

  6. Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L. Antibacterial coating of implants in orthopaedics and trauma: A classification proposal in an evolving panorama. J Orthop Surg Res 2015;10:157.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arciola CR, An YH, Campoccia D, Donati ME, Montanaro L. Etiology of implant orthopedic infections: A survey on 1027 clinical isolates. Int J Artif Organs 2005;28:1091–100.

    Article  CAS  PubMed  Google Scholar 

  8. Arciola CR, Campoccia D, Gamberini S, Donati ME, Pirini V, Visai L, et al. Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials 2005;26:6530–5.

    Article  CAS  PubMed  Google Scholar 

  9. Peel TN, Cheng AC, Buising KL, Choong PF. Microbiological aetiology, epidemiology, and clinical profile of prosthetic joint infections: Are current antibiotic prophylaxis guidelines effective? Antimicrob Agents Chemother 2012;56:2386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 2004;8:37–57.

    Article  CAS  PubMed  Google Scholar 

  11. Busscher HJ, van der Mei HC. Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 1997;11:24–32.

    Article  CAS  PubMed  Google Scholar 

  12. Gottenbos B, Van Der Mei HC, Busscher HJ, Grijpma DW, Feijen J. Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J Mater Sci Mater Med 1999;10:853–5.

    Article  CAS  PubMed  Google Scholar 

  13. Balazs DJ, Triandafillu K, Chevolot Y, Aronsson BO, Harms H, Descouts P, et al. Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surf Interf Anal 2003;35:301–9.

    Article  CAS  Google Scholar 

  14. Henrique MA, Azeredo J, Oliveira R. Adhesion of Candida albicans and Candida dubliniensis to acrylic and hydroxyapatite. Colloids Surf B Biointerfaces 2004;33:235–41.

    Article  Google Scholar 

  15. Scheuerman TR, Camper AK, Hamilton MA. Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci 1998;208:23–33.

    Article  CAS  PubMed  Google Scholar 

  16. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006;17 Suppl 2:68–81.

    Article  PubMed  Google Scholar 

  17. Subramani K, Jung RE, Molenberg A, Hammerle CH. biofilm on dental implants: A review of the literature. Int J Oral Maxillofac Implants 2009;24:616–26.

    PubMed  Google Scholar 

  18. Quirynen M, Bollen CM. The Influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 1995;22:1–14.

    Article  CAS  PubMed  Google Scholar 

  19. Braem A, Van Mellaert L, Mattheys T, Hofmans D, De Waelheyns E, Geris L, et al. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A 2014;102:215–24.

    Article  PubMed  Google Scholar 

  20. Steckelberg J, Osmon D. Prosthetic Joint Infections. In: Waldvogel F, Bisno A, editors. Infections Associated with Indwelling Medical Devices. 3rd ed. Washington D.C.: American Society for Microbiology; 2000. p. 173–209.

    Google Scholar 

  21. Zimmerli W, Sendi P. Pathogenesis of implant-associated infection: The role of the host. Semin Immunopathol 2011;33:295–306.

    Article  CAS  PubMed  Google Scholar 

  22. Lalani T, Chu VH, Grussemeyer CA, Reed SD, Bolognesi MP, Friedman JY, et al. Clinical outcomes and costs among patients with Staphylococcus aureus bacteremia and orthopedic device infections. Scand J Infect Dis 2008;40:973–7.

    Article  PubMed  Google Scholar 

  23. Murdoch DR, Roberts SA, Fowler VG Jr., Shah MA, Taylor SL, Morris AJ, et al. Infection of orthopedic prostheses after Staphylococcus aureus bacteremia. Clin Infect Dis 2001;32:647–9.

    Article  CAS  PubMed  Google Scholar 

  24. Sendi P, Banderet F, Graber P, Zimmerli W. Periprosthetic joint infection following Staphylococcus aureus bacteremia. J Infect 2011;63:17–22.

    Article  PubMed  Google Scholar 

  25. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: Its production and regulation. Int J Artif Organs 2005;28:1062–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wagner C, Aytac S, Hänsch GM. Biofilm growth on implants: Bacteria prefer plasma coats. Int J Artif Organs 2011;34:811–7.

    Article  CAS  PubMed  Google Scholar 

  27. Joseph IG, Dale EN, Patrick E, David CJ, Romig AD Jr., Charles EL, et al. Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists. New York Springer Science & Business Media; 2012.

    Google Scholar 

  28. Koseki H, Yonekura A, Shida T, Yoda I, Horiuchi H, Morinaga Y, et al. Early staphylococcal biofilm formation on solid orthopaedic implant materials: In vitro study. PLoS One 2014;9:e107588.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Patel SS, Aruni W, Inceoglu S, Akpolat YT, Botimer GD, Cheng WK, et al. A comparison of Staphylococcus aureus biofilm formation on cobalt-chrome and titanium-alloy spinal implants. J Clin Neurosci 2016;31:219–23.

    Article  CAS  PubMed  Google Scholar 

  30. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 2010;59:253–68.

    Article  CAS  PubMed  Google Scholar 

  31. Pavithra D, Doble M. Biofilm formation, bacterial adhesion and host response on polymeric implants – Issues and prevention. Biomed Mater 2008;3:034003.

    Article  CAS  PubMed  Google Scholar 

  32. Schildhauer TA, Robie B, Muhr G, Köller M. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma 2006;20:476–84.

    Article  PubMed  Google Scholar 

  33. Chang CC, Merritt K. Infection at the site of implanted materials with and without preadhered bacteria. J Orthop Res 1994;12:526–31.

    Article  CAS  PubMed  Google Scholar 

  34. Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol 2005;156:506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benu Dhawan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhotra, R., Dhawan, B., Garg, B. et al. A Comparison of Bacterial Adhesion and Biofilm Formation on Commonly Used Orthopaedic Metal Implant Materials: An In vitro Study. JOIO 53, 148–153 (2019). https://doi.org/10.4103/ortho.IJOrtho_66_18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ortho.IJOrtho_66_18

Keywords

Navigation