Skip to main content
Log in

The influence of triethylcitrate on the biological properties of poly (L-lactic-co-glycolic acid) membranes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable polymers have a variety of uses in basic and clinical research, as well as important therapeutic applications. The most commonly used are poly (lactic acid), poly (glycolic acid) and their copolymer, poly (L-lactic-co-glycolic acid) or PLGA. The incorporation of a plasticizer into a polymer can be used to obtain a product with specific properties. In this work, we examined the influence of a plasticizer (triethylcitrate) on the properties of PLGA membrane implants for human clinical uses. Membranes with and without plasticizer were dense and compact and contained no pores. The incorporation of 7% plasticizer enhanced the degradation the polymer when compared to polymer without plasticizer. In membranes without plasticizer, the initiation of degradation was very slow and was seen only 60 days after implantation, should allow the use of this material in the repair of damage tissue. In both cases, macroscopic analysis showed that there was no adhesion of the membrane to capsule fibrous, and this adversely affected preservation of the polymer. With time, the adherence of the polymer to surrounding tissue increased. Overall there was little degradation of membranes without plasticizer compared to those containing plasticizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. DAVIS and J. P. VACANTI Biomaterials 17 (1996) 365.

    Article  CAS  Google Scholar 

  2. R. M. LUCIANO, C. A. C. ZAVAGLIA, E. A. R. DUEK and M. C. ALBERTO-RINCON, “Synthesis and characterization of poly (L-lactic acid) membranes: studies in vivo and in vitro.” Journal of Materials Science: Materials in Medicine 14 (2003) 87.

    Article  CAS  Google Scholar 

  3. A. VAN SLIEDREGT, J. A. VAN LOON, J. VAN DER BRINK, K. DE GROOT and C. A. VAN BLITTESWIJK Ibid. 15 (1994) 251.

    Google Scholar 

  4. L. LU and A. G. MIKOS, The importance of new processing techniques in tissue engineering. Mater RES Soc Bull 21 (1996) 28.

    CAS  Google Scholar 

  5. L. LU, S. J. PETER, M. D. D. LYMAN, H. L. LAI, S. M. LEITE, J. A. TAMADA, S. UYAMA, J. P. VACANTI, R. LANGER and A. G. MIKOS, “In vitro and in vivo degradation of porous poly (DL-lactic-co-glycolic acid) foams.” Biomaterials 21 (2000) 1837.

    Article  CAS  Google Scholar 

  6. J. E. BABENSEE, J. M. ANDERSON, L. V. MCINTIRE and A. G. MIKOS, Host response to tissue engineered devices. Adv Drug Deliv Rev 33 (1998) 111.

    Article  CAS  Google Scholar 

  7. S. H. BARBANTI, A. R. SANTOS JR, C. A. C. ZAVAGLIA and E. A. R. DUEK Porous and dense poly (L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: In vitro degradation in culture medium and osteoblasts culture. Journal of Materials Science: Materials in Medicine 15 (2004) 1315.

    Article  CAS  Google Scholar 

  8. R. M. LUCIANO, “Synthesis, characterization and degradation of poly (lactic acid) membranes, a bioabsorbable polymer.” UNICAMP, Masters dissertation, 1997.

  9. R. M. LUCIANO, E. A. R. DUEK and M. C. ALBERTO-RINCON, “The effect of triethylcitrate on the porosity and biocompatibility of poly (lactic acid) membranes” Braz. J. morphol. 18 (1) (2001) 7.

    Google Scholar 

  10. H. PISTNER, D. R. BENDIX, J. MUHLING and J. F. REUTHER, “Poly (L-lactide)—a long-term degradation study in vivo. 3 Analytical characterizations.” Biomaterials 14 (1993) 291.

    Article  CAS  Google Scholar 

  11. D. R. M. SILVIA, S. M. N. SCAPIN, P. P. JOAZEIRO, M. C. ALBERTO-RINCON, R. M. LUCIANO and E. A. R. DUEK “In vivo interaction of cells on poly L- (lactic acid) membranes containing plasticizer,” Journal of Materials Science: Materials in Medicine 13 (2002) 327.

    Article  Google Scholar 

  12. M. C. C. SPECTOR and TONG-LI, The local tissue response to biomaterials. Crit. Rev. Biocomp. 5 (1989) 269.

    CAS  Google Scholar 

  13. A. TEZCANER, K. BUGRA and V. HASIRCI Retinal pigment epithelium cell culture on surface modified poly (hydroxybutyrate—co—hydroxyvalerate) thin films. Biomaterials. 24 (2003) 4573.

    Article  CAS  Google Scholar 

  14. J. E. BERGSMA, F. R. ROZEMA, R. R. M. BOS, G. BOERING, W. C. de BRUIJIN and A. J. PENNINGS, Biocompatibility study of as-polymerized poly (L-lactide) in rats using a cage implant system. Journal of Biom. Mat. Res. 29 (1995) 173.

    Article  CAS  Google Scholar 

  15. G. J. BEUMER, C. A. VAN BLITTRESWIJK and M. PONEC, Biocompatibility of a biodegradable matrix used as a skin substitute: An in vivo evaluation. Journal of Biom. Mat. Res. 28 (1994) 545.

    Article  CAS  Google Scholar 

  16. K. H. LAM, J. M. SCHAKENRAAD, H. ESSELBRUGGE, J. FEIJEN and P. NIEUWENHUIS, The effect of phagocytosis of poly (L-lactic acid) fragment on cellular morphology and viability. Journal of Biomedical Materials Research: Materials in Medicine 27 (1993) 1569.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietro, L., Silva, D.R.M., Alberto-Rincon, M.C. et al. The influence of triethylcitrate on the biological properties of poly (L-lactic-co-glycolic acid) membranes. J Mater Sci: Mater Med 17, 849–857 (2006). https://doi.org/10.1007/s10856-006-9845-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-9845-y

Keywords

Navigation