Skip to main content
Log in

Interdependence of morphological attributes and optoelectronic properties of porous silicon-nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Si nanowires (SiNWs) are receiving tremendous attention due to their significant optical and electrical properties; however, porosity on the nanowires opens an opportunity for further improvement. The work establishes a connection between morphological changes in the optical and electrical characteristics of the porous SiNWs (PSiNWs) because of H2O2 concentration (0.1 M, 0.2 M, 0.3 M) variation during metal-assisted chemical etching. The directional etching controls the porosity; a modification to the classical gravimetric method is introduced to measure the porosity. PSiNWs fabricated at 0.2 M H2O2 concentration achieve the minimal average reflectance of 8.29% in the visible range and a band gap of 1.39 eV. The work discusses the effect of the decrease in saturation current and broad diode biasing voltage on the open-circuit voltage of solar cells, considering the optical and electrical properties of the PSiNWs. The optimization of H2O2 concentration to fabricate the PSiNWs for photovoltaic applications (photon absorption and antireflection properties) is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. E. Xifré-Pérez, L.F. Marsal, J. Ferré-Borrull, J. Pallarès, Porous silicon omnidirectional mirrors and distributed Bragg reflectors for planar waveguide applications. J. Appl. Phys. (2007). https://doi.org/10.1063/12784019

    Article  Google Scholar 

  2. P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, Z.M. Wang, Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 11, 704–737 (2016). https://doi.org/10.1016/j.nantod.2016.10.001

    Article  CAS  Google Scholar 

  3. Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001). https://doi.org/10.1126/science.291.5505.851

    Article  CAS  Google Scholar 

  4. N. Dimov, S. Kugino, M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim. Acta 48, 1579–1587 (2003). https://doi.org/10.1016/S0013-4686(03)00030-6

    Article  CAS  Google Scholar 

  5. S. Ohara, J. Suzuki, K. Sekine, T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power. Sources 136, 303–306 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.014

    Article  CAS  Google Scholar 

  6. H. Kang, Crystalline silicon vs. Amorphous silicon: the significance of structural differences in photovoltaic applications. IOP Conf. Ser. Earth Environ. Sci. 726, 6–11 (2021). https://doi.org/10.1088/1755-1315/726/1/012001

    Article  Google Scholar 

  7. R. Chandra Muduli, P. Kale, Chemically modified surface of silicon nanostructures to enhance hydrogen uptake capabilities. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.06.030

    Article  Google Scholar 

  8. Y.D. Ivanov, T.S. Romanova, K.A. Malsagova, T.O. Pleshakova, A.I. Archakov, Use of silicon nanowire sensors for early cancer diagnosis. Molecules 26, 3734 (2021). https://doi.org/10.3390/molecules26123734

    Article  CAS  Google Scholar 

  9. V. Kashyap, C. Kumar, N. Chaudhary, N. Goyal, K. Saxena, Comparative study of quantum confinements effect present in silicon nanowires using absorption and Raman spectroscopy. Opt. Mater. (Amst) 121, 111538 (2021). https://doi.org/10.1016/j.optmat.2021.111538

    Article  CAS  Google Scholar 

  10. S. Maurya, S.P. Muduli, S. Nayak, P. Kale, Optimization of controlling parameters of porous silicon synthesis using Taguchi design of experiment. Russ. J. Phys. Chem. A 97, 749–755 (2023). https://doi.org/10.1134/S0036024423040295

    Article  CAS  Google Scholar 

  11. S.P. Muduli, P. Kale, State-of-the-art passivation strategies of c-Si for photovoltaic applications: a review. Mater. Sci. Semicond. Process. 154, 107202 (2023). https://doi.org/10.1016/j.mssp.2022.107202

    Article  CAS  Google Scholar 

  12. S.P. Muduli, P. Kale, Free-standing nanowire layer-transfer parametric optimisation of multi-response process by Grey Taguchi design. Mater. Sci. Technol. (United Kingdom) 39, 591–599 (2023). https://doi.org/10.1080/02670836.2022.2129203

    Article  CAS  Google Scholar 

  13. D.A. Rudd, N.H. Voelcker, R.S. Minhas, E. Eduardo Antunez, T.M. Guinan, T.R. Gengenbach, Fluorocarbon plasma gas passivation enhances performance of porous silicon for desorption/ionization mass spectrometry. ACS Sens. 5, 3226–3236 (2020). https://doi.org/10.1021/acssensors.0c01532

    Article  CAS  Google Scholar 

  14. R. Chandra Muduli, P. Kale, Silicon nanostructures for solid-state hydrogen storage: a review. Int. J. Hydrogen Energy 48, 1401–1439 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.055

    Article  CAS  Google Scholar 

  15. S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu, F. Wei, Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res. Lett. 9, 1–8 (2014). https://doi.org/10.1186/1556-276X-9-196

    Article  CAS  Google Scholar 

  16. K.A. Gonchar, D.V. Moiseev, I.V. Bozhev, L.A. Osminkina, Influence of H2O2 concentration on the structural and photoluminescent properties of porous silicon nanowires fabricated by metal-assisted chemical etching. Mater. Sci. Semicond. Process. 125, 105644 (2021). https://doi.org/10.1016/j.mssp.2020.105644

    Article  CAS  Google Scholar 

  17. J. Charrier, A. Najar, P. Pirasteh, Study of optical absorbance in porous silicon nanowires for photovoltaic applications. Appl. Surf. Sci. 283, 828–832 (2013). https://doi.org/10.1016/j.apsusc.2013.07.026

    Article  CAS  Google Scholar 

  18. L. Lin, S. Guo, X. Sun, J. Feng, Y. Wang, Synthesis and photoluminescence properties of porous silicon nanowire arrays. Nanoscale Res. Lett. 5, 1822–1828 (2010). https://doi.org/10.1007/s11671-010-9719-6

    Article  CAS  Google Scholar 

  19. C. Lai, X. Li, C. Liu, X. Guo, Z. Xiang, B. Xie, L. Zou, Improvement in gravimetric measurement for determining the porosity and thickness of porous silicon using an optimized solution. Mater. Sci. Semicond. Process. 26, 501–505 (2014). https://doi.org/10.1016/j.mssp.2014.05.046

    Article  CAS  Google Scholar 

  20. N. Geyer, N. Wollschläger, B. Fuhrmann, A. Tonkikh, A. Berger, P. Werner, M. Jungmann, R. Krause-Rehberg, H.S. Leipner, Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching. Nanotechnology 26, 245301 (2015). https://doi.org/10.1088/0957-4484/26/24/245301

    Article  CAS  Google Scholar 

  21. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, Electrically conductive and optically active porous silicon nanowires. Nano Lett. 9, 4539–4543 (2009). https://doi.org/10.1021/nl903030h

    Article  CAS  Google Scholar 

  22. X. Zhong, Y. Qu, Y.C. Lin, L. Liao, X. Duan, Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl. Mater. Interfaces 3, 261–270 (2011). https://doi.org/10.1021/am1009056

    Article  CAS  Google Scholar 

  23. B. Rajesh Kumar, T. Subba Rao, AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig. J. Nanomater. Biostructures. 7, 1881–1889 (2012)

    Google Scholar 

  24. S. Maurya, R.C. Muduli, P. Kale, Physical forces responsible for agglomeration of silicon nanowires arrays synthesized by metal-assisted chemical etching. Russ. J. Phys. Chem. A 97, 1990–2000 (2023). https://doi.org/10.1134/S0036024423090224

    Article  CAS  Google Scholar 

  25. C. Zhang, S. Li, W. Ma, Z. Ding, X. Wan, J. Yang, Z. Chen, Y. Zou, J. Qiu, Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE. J. Mater. Sci. Mater. Electron. 28, 8510–8518 (2017). https://doi.org/10.1007/s10854-017-6573-7

    Article  CAS  Google Scholar 

  26. S. Li, W. Ma, X. Chen, K. Xie, Y. Li, X. He, X. Yang, Y. Lei, Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl. Surf. Sci. 369, 232–240 (2016). https://doi.org/10.1016/j.apsusc.2016.02.028

    Article  CAS  Google Scholar 

  27. Q. Wang, W. Zhou, F. Chen, R. Yang, The effect of surface microstructure on the optical reflectance of monocrystalline silicon. Mater. Res. Express. 3, 125020 (2016). https://doi.org/10.1088/2053-1591/3/12/125020

    Article  CAS  Google Scholar 

  28. M.K. Basher, M.K. Hossain, M.J. Uddin, M.A.R. Akand, K.M. Shorowordi, Effect of pyramidal texturization on the optical surface reflectance of monocrystalline photovoltaic silicon wafers. Optik (Stuttg) 172, 801–811 (2018). https://doi.org/10.1016/j.ijleo.2018.07.116

    Article  CAS  Google Scholar 

  29. R. Chandra Muduli, M. Kumar Sahoo, P. Kale, Wetting behavior of silicon nanowires array fabricated by metal-assisted chemical etching. Mater. Today Proc. 62, 5917–5922 (2022). https://doi.org/10.1016/j.matpr.2022.04.635

    Article  CAS  Google Scholar 

  30. S. Gao, S. Hong, S. Park, H.Y. Jung, W. Liang, Y. Lee, C.W. Ahn, J.Y. Byun, J. Seo, M.G. Hahm, H. Kim, K. Kim, Y. Yi, H. Wang, M. Upmanyu, S.G. Lee, Y. Homma, H. Terrones, Y.J. Jung, Catalyst-free synthesis of sub-5 nm silicon nanowire arrays with massive lattice contraction and wide bandgap. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-31174-x

    Article  Google Scholar 

  31. S.A. Moiz, A.N.M. Alahmadi, A.J. Aljohani, Design of silicon nanowire array for PEDOT:PSS-silicon nanowire-based hybrid solar cell. Energies 13, 3797 (2020). https://doi.org/10.3390/en13153797

    Article  CAS  Google Scholar 

  32. S. Praveenkumar, D. Lingaraja, P. Mahiz Mathi, G. Dinesh Ram, An experimental study of optoelectronic properties of porous silicon for solar cell application. Optik (Stuttg) 178, 216–223 (2019). https://doi.org/10.1016/j.ijleo.2018.09.176

    Article  CAS  Google Scholar 

  33. J. Müller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells. Sol. Energy 77, 917–930 (2004). https://doi.org/10.1016/j.solener.2004.03.015

    Article  CAS  Google Scholar 

  34. L.F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2009). https://doi.org/10.1021/nl8036323

    Article  CAS  Google Scholar 

  35. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  CAS  Google Scholar 

  36. M.K. Sahoo, S.P. Muduli, P. Kale, Tailoring electrical characteristics of Si-nanowires and etched Si by MACE temperature variation. J. Mater. Sci. Mater. Electron. 34, 1275 (2023). https://doi.org/10.1007/s10854-023-10709-y

    Article  CAS  Google Scholar 

  37. W.L. Sung, Y.S. Yang, Y. Li, Work-Function fluctuation of gate-all-around silicon nanowire n-MOSFETs: a unified comparison between cuboid and voronoi methods. IEEE J. Electron Devices Soc. 9, 151–159 (2021). https://doi.org/10.1109/JEDS.2020.3046608

    Article  CAS  Google Scholar 

  38. S. Pinilla, R. Barrio, N. González, R. Pérez Casero, F. Márquez, J.M. Sanz, C. Morant, Role of Hydrogen in the preparation of amorphous silicon nanowires by metal-assisted chemical etching. J. Phys. Chem. C 122, 22667–22674 (2018). https://doi.org/10.1021/acs.jpcc.8b05332

    Article  CAS  Google Scholar 

  39. T.S. Orlova, A.V. Ankudinov, A.M. Mavlyutov, N.N. Resnina, Effect of grain boundaries on the electron work function of ultrafine grained aluminum. Rev. Adv. Mater. Sci. 57, 110–115 (2018). https://doi.org/10.1515/rams-2018-0053

    Article  CAS  Google Scholar 

  40. G. Shao, Work function and electron affinity of semiconductors: doping effect and complication due to fermi level pinning. Energy Environ. Mater. 4, 273–276 (2021). https://doi.org/10.1002/eem2.12218

    Article  CAS  Google Scholar 

  41. F. Léonard, J. Tersoff, Role of fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693–4696 (2000). https://doi.org/10.1103/PhysRevLett.84.4693

    Article  Google Scholar 

  42. C. Canevali, M. Alia, M. Fanciulli, M. Longo, R. Ruffo, C.M. Mari, Influence of doping elements on the formation rate of silicon nanowires by silver-assisted chemical etching. Surf. Coatings Technol. 280, 37–42 (2015). https://doi.org/10.1016/j.surfcoat.2015.08.013

    Article  CAS  Google Scholar 

  43. C.P.Y. Wong, C. Troadec, A.T.S. Wee, K.E.J. Goh, Gaussian thermionic emission model for analysis of Au/Mo S2 Schottky–Barrier devices. Phys. Rev. Appl. 14, 54027 (2020). https://doi.org/10.1103/PhysRevApplied.14.054027

    Article  CAS  Google Scholar 

  44. N. Ngo, H. Niu, P. Bharadwaj, H. Bhatti, S. Adhikari, Van der Pauw resisitivity measurement. Tech. Rep. (2017). https://doi.org/10.13140/RG.2.2.23468.67208

    Article  Google Scholar 

  45. Y. Xu, T. Gong, J.N. Munday, The generalized Shockley–Queisser limit for nanostructured solar cells. Sci. Rep. 5, 13536 (2015). https://doi.org/10.1038/srep13536

    Article  Google Scholar 

Download references

Funding

The research is a part of the project funded by SERB-DST, Govt. of India, with sanction no. CRG/2021/006956 dated 12-Mar-2022 under the Core Research Grant (CRG) scheme.

Author information

Authors and Affiliations

Authors

Contributions

SPM and MAK contributed to the conceptualization, experimentation, data collection, analysis, manuscript preparation, review, and editing. PK participated in the supervision, conceptualization, resources, reviewing, and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paresh Kale.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muduli, S.P., Khan, M.A. & Kale, P. Interdependence of morphological attributes and optoelectronic properties of porous silicon-nanowires. J Mater Sci: Mater Electron 34, 1977 (2023). https://doi.org/10.1007/s10854-023-11314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11314-9

Navigation