Skip to main content
Log in

Effect of diffusion doping-induced defects on shunt resistance affecting Si-nanowire solar cell performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Si nanowires (SiNWs) are preferred over bulk Si for photovoltaics owing to near-zero optical reflection and band gap tunability. However, the cost-effective fabrication of phosphorus-doped SiNWs poses challenges. The work employs metal-assisted chemical etching for SiNW array fabrication and spin-on doping with P2O5 as the phosphorus source to form an n-type emitter. The P2O5 concentration in the phosphosilicate glass (PSG) sol–gel controls the phosphorus-doping level on the SiNWs. Morphological analysis detects a marginal reduction in the SiNW lengths with P2O5 concentration after PSG layer removal. The optical studies show a significant decrease of the average reflectance to 3.99% and a band gap of 1.59 eV for the optimized doping density (fabricated with a P2O5 concentration of 5 mM), leading to a 34.5% improvement in the ultimate efficiency. Raman asymmetric ratio and photoluminescence emission spectra elucidate the possible surface and bulk defects causing the recombination. The resistivity of the optimized phosphorus-doped SiNW array decreases to 3.37 Ω cm due to a significant increase in the donner concentration. The study compares various methods to estimate the internal cell resistances from the illuminated current–voltage measurement and considers the single-diode model accurate. The power conversion efficiency and the fill factor of the optimized solar cell are 4.09% and 43.4%, respectively, limited by the increased series resistance and decreased shunt resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, Z.M. Wang, Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today. 11, 704–737 (2016). https://doi.org/10.1016/j.nantod.2016.10.001

    Article  CAS  Google Scholar 

  2. B. Zhang, J. Jie, X. Zhang, X. Ou, X. Zhang, Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications. ACS Appl. Mater. Interfaces. 9, 34527–34543 (2017). https://doi.org/10.1021/acsami.7b06620

    Article  CAS  PubMed  Google Scholar 

  3. M. Seo, S. Yoon, H. Cho, S. Lee, K. Kim, B.D. Kong, M. Meyyappan, C.K. Baek, Solar Cell using hourglass-shaped Silicon nanowires for increased light-trapping path. IEEE J. Photovoltaics. 10, 475–479 (2020). https://doi.org/10.1109/JPHOTOV.2020.2964329

    Article  Google Scholar 

  4. A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M.D. Eisaman, C.T. Black, Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells. Nat. Commun. 6, 5963 (2015). https://doi.org/10.1038/ncomms6963

    Article  ADS  CAS  PubMed  Google Scholar 

  5. M.K. Sahoo, S.P. Muduli, P. Kale, Tailoring electrical characteristics of Si-nanowires and etched Si by MACE temperature variation. J. Mater. Sci. Mater. Electron. 34, 1275 (2023). https://doi.org/10.1007/s10854-023-10709-y

    Article  CAS  Google Scholar 

  6. V. Kashyap, C. Kumar, N. Chaudhary, N. Goyal, K. Saxena, Comparative study of quantum confinements effect present in Silicon Nanowires using absorption and Raman spectroscopy. Opt. Mater. (Amst). 121, 111538 (2021). https://doi.org/10.1016/j.optmat.2021.111538

    Article  CAS  Google Scholar 

  7. Y. Yao, F. Li, S.T. Lee, Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts. Chem. Phys. Lett. 406, 381–385 (2005). https://doi.org/10.1016/j.cplett.2005.03.027

    Article  ADS  CAS  Google Scholar 

  8. Z. Huang, H. Fang, J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 19, 744–748 (2007). https://doi.org/10.1002/adma.200600892

    Article  CAS  Google Scholar 

  9. H.P. Phan, T. Kozeki, T. Dinh, T. Fujii, A. Qamar, Y. Zhu, T. Namazu, N.T. Nguyen, D.V. Dao, Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Adv. 5, 82121–82126 (2015). https://doi.org/10.1039/c5ra13425k

    Article  ADS  CAS  Google Scholar 

  10. R. Chandra Muduli, P. Kale, Chemically modified surface of silicon nanostructures to enhance hydrogen uptake capabilities. Int. J. Hydrogen Energy. (2022). https://doi.org/10.1016/j.ijhydene.2022.06.030

    Article  Google Scholar 

  11. J. Huang, S.Y. Chiam, H.H. Tan, S. Wang, W.K. Chim, Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching. Chem. Mater. 22, 4111–4116 (2010). https://doi.org/10.1021/cm101121c

    Article  CAS  Google Scholar 

  12. J. Yeom, D. Ratchford, C.R. Field, T.H. Brintlinger, P.E. Pehrsson, Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching. Adv. Funct. Mater. 24, 106–116 (2014). https://doi.org/10.1002/adfm.201301094

    Article  CAS  Google Scholar 

  13. S.P. Muduli, M.A. Khan, P. Kale, Structural Optimization of Si Nanowires for Ultimate Efficiency Improvement via tuning Optical properties. Trans. Electr. Electron. Mater. (2023). https://doi.org/10.1007/s42341-023-00474-4

    Article  Google Scholar 

  14. M. Perego, F. Caruso, G. Seguini, E. Arduca, R. Mantovan, K. Sparnacci, M. Laus, Doping of silicon by phosphorus end-terminated polymers: drive-in and activation of dopants. J. Mater. Chem. C 8, 10229–10237 (2020). https://doi.org/10.1039/d0tc01856b

    Article  CAS  Google Scholar 

  15. G. Dong, F. Liu, J. Liu, H. Zhang, M. Zhu, Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping. Nanoscale Res. Lett. 8, 1–17 (2013). https://doi.org/10.1186/1556-276X-8-544

    Article  ADS  CAS  Google Scholar 

  16. X.X. Lin, X. Hua, Z.G. Huang, W.Z. Shen, Realization of high performance silicon nanowire based solar cells with large size. Nanotechnology. 24, 235402 (2013). https://doi.org/10.1088/0957-4484/24/23/235402

    Article  ADS  CAS  PubMed  Google Scholar 

  17. M.L. Hoarfrost, K. Takei, V. Ho, A. Heitsch, P. Trefonas, A. Javey, R.A. Segalman, Spin-on organic polymer dopants for silicon. J. Phys. Chem. Lett. 4, 3741–3746 (2013). https://doi.org/10.1021/jz4019095

    Article  CAS  Google Scholar 

  18. B.R. Huang, Y.K. Yang, T.C. Lin, W.L. Yang, A simple and low-cost technique for silicon nanowire arrays based solar cells. Sol Energy Mater. Sol Cells. 98, 357–362 (2012). https://doi.org/10.1016/J.SOLMAT.2011.11.031

    Article  CAS  Google Scholar 

  19. L. Chu, S. Zhai, W. Ahmad, J. Zhang, Y. Zang, W. Yan, Y. Li, High-performance large-area perovskite photovoltaic modules. Nano Res. Energy. 1, e9120024 (2022). https://doi.org/10.26599/NRE.2022.9120024

    Article  Google Scholar 

  20. Z. Wang, X. Yang, X. He, H. Xue, X. Wang, H. Dong, J. Zhu, W. Mao, X.L. Xu, X. Li, Roles of oxygen vacancy and ferroelectric polarization in photovoltaic effects of BiFeO3 based devices. Solid State Commun. 360, 115042 (2023). https://doi.org/10.1016/j.ssc.2022.115042

    Article  CAS  Google Scholar 

  21. B.R. Huang, Y.K. Yang, W.L. Yang, Efficiency improvement of silicon nanostructure-based solar cells. Nanotechnology. 25, 035401 (2014). https://doi.org/10.1088/0957-4484/25/3/035401

    Article  ADS  CAS  PubMed  Google Scholar 

  22. S.P. Muduli, M.A. Khan, P. Kale, Interdependence of morphological attributes and Optoelectronic properties of Porous Silicon-Nanowires, Jouranl Mater. Sci. Mater. Electron. 34, 1977 (2023). https://doi.org/10.1007/s10854-023-11314-9

    Article  CAS  Google Scholar 

  23. A. Mohamed Elnahrawy, A. Ibrahim Ali, Influence of reaction conditions on Sol-Gel process producing SiO2 and SiO2-P2O5 gel and glass. New. J. Glas Ceram. 04, 42–47 (2014). https://doi.org/10.4236/njgc.2014.42006

    Article  CAS  Google Scholar 

  24. H. Wagner, A. Dastgheib-Shirazi, B. Min, A.E. Morishige, M. Steyer, G. Hahn, C. Del, T. Cañizo, P.P. Buonassisi, Altermatt, Optimizing phosphorus diffusion for photovoltaic applications: Peak doping, inactive phosphorus, gettering, and contact formation. J. Appl. Phys. 119, 185704 (2016). https://doi.org/10.1063/1.4949326

    Article  ADS  CAS  Google Scholar 

  25. S. Maurya, R.C. Muduli, P. Kale, Physical forces responsible for agglomeration of Silicon nanowires arrays synthesized by metal-assisted Chemical etching. Russ J. Phys. Chem. A 97, 1990–2000 (2023). https://doi.org/10.1134/S0036024423090224

    Article  CAS  Google Scholar 

  26. P. Yogi, D. Poonia, S. Mishra, S.K. Saxena, S. Roy, V. Kumar, P.R. Sagdeo, R. Kumar, Spectral anomaly in Raman scattering from p-Type Silicon Nanowires. J. Phys. Chem. C 121, 5372–5378 (2017). https://doi.org/10.1021/acs.jpcc.6b12811

    Article  CAS  Google Scholar 

  27. M.K. Sahoo, P.G. Kale, Micro-raman study of growth parameter restraint for silicon nanowire synthesis using MACE. Superlattices Microstruct. 135, 106289 (2019). https://doi.org/10.1016/j.spmi.2019.106289

    Article  CAS  Google Scholar 

  28. B.G. Burke, J. Chan, K.A. Williams, Z. Wu, A.A. Puretzky, D.B. Geohegan, Raman study of Fano interference in p-type doped silicon. J. Raman Spectrosc. 41, 1759–1764 (2010). https://doi.org/10.1002/jrs.2614

    Article  ADS  CAS  Google Scholar 

  29. R. Plugaru, E. Fakhri, C. Romanitan, I. Mihalache, G. Craciun, N. Plugaru, H.O. Arnason, M.T. Sultan, G.A. Nemnes, S. Ingvarsson, H.G. Svavarsson, A. Manolescu, Structure and electrical behavior of silicon nanowires prepared by MACE process. Surf. Interfaces. 33, 102167 (2022). https://doi.org/10.1016/j.surfin.2022.102167

    Article  CAS  Google Scholar 

  30. W.B. Yu, G. Ouyang, Geometry-dependent band shift and dielectric modification of nanoporous Si nanowires. Sci. Rep. 7, 14456 (2017). https://doi.org/10.1038/s41598-017-14647-8

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. ASTM, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, Astm. 03, (2013) 1–21. http://enterprise.astm.org/SUBSCRIPTION/filtrexx40.cgi?+REDLINE_PAGES/G173.htm (accessed June 27, 2023)

  32. S.P. Muduli, P. Kale, State-of-the-art passivation strategies of c-Si for photovoltaic applications: a review. Mater. Sci. Semicond. Process. 154, 107202 (2023). https://doi.org/10.1016/j.mssp.2022.107202

    Article  CAS  Google Scholar 

  33. A.P. Baraban, S.N. Samarin, V.A. Prokofiev, V.A. Dmitriev, A.A. Selivanov, Y. Petrov, Luminescence of SiO2 layers on silicon at various types of excitation. J. Lumin. 205, 102–108 (2019). https://doi.org/10.1016/j.jlumin.2018.09.009

    Article  CAS  Google Scholar 

  34. N. Ding, J. Xu, Q. Zhang, J. Su, Y. Gao, X. Zhou, T. Zhai, Controllable carrier type in Boron Phosphide nanowires toward Homostructural Optoelectronic devices, ACS Appl. Mater. Interfaces. 10, 10296–10303 (2018). https://doi.org/10.1021/acsami.7b17204

    Article  CAS  Google Scholar 

  35. R. Venkatesan, J. Mayandi, J.M. Pearce, V. Venkatachalapathy, Influence of metal assisted chemical etching time period on mesoporous structure in as-cut upgraded metallurgical grade silicon for solar cell application. J. Mater. Sci. Mater. Electron. 30, 8676–8685 (2019). https://doi.org/10.1007/s10854-019-01191-6

    Article  CAS  Google Scholar 

  36. M. Rahmani, L. Jerbi, A. Meftah, Strong photoluminescence enhancement of silicon nanowires by poly(3-hexylthiophene) deposition. J. Lumin. 217, 116805 (2020). https://doi.org/10.1016/j.jlumin.2019.116805

    Article  CAS  Google Scholar 

  37. G. Masetti, M. Severi, S. Solmi, B.-D. Silicon, Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and, B.-D. Silicon.  IEEE Trans. Electron Dev. 30(7), 764–769 (1983)

    Article  ADS  Google Scholar 

  38. S.A. Moiz, A.N.M. Alahmadi, A.J. Aljohani, Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-based hybrid solar cell. Energies. 13, 3797 (2020). https://doi.org/10.3390/en13153797

    Article  CAS  Google Scholar 

  39. F. Ghani, M. Duke, J. Carson, Numerical calculation of series and shunt resistances and diode quality factor of a photovoltaic cell using the Lambert W-function. Sol Energy. 91, 422–431 (2013). https://doi.org/10.1016/j.solener.2012.09.005

    Article  ADS  Google Scholar 

  40. E.L. Meyer, Extraction of Saturation Current and Ideality factor from measuring V Oc and I sc of Photovoltaic modules. Int. J. Photoenergy. 2017, 1–9 (2017). https://doi.org/10.1155/2017/8479487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is a part of the project funded by SERB-DST, Govt. of India, with sanction no. CRG/2021/006956 dated 12-Mar-2022 under the Core Research Grant (CRG) scheme. The authors thankfully acknowledge Subhasri Subudhi and Dr. Pitamber Mahanandia for the illuminated J-V measurement.

Author information

Authors and Affiliations

Authors

Contributions

Sakti Prasanna Muduli: Conceptualization, Data curation, Investigation, Methodology, Formal analysis, Writing—original draft, review and editing, Validation, Visualization; Paresh kale: Supervision, Funding acquisition, Resources, Project administration, Writing—Conceptualization, review and editing, Validation.

Corresponding author

Correspondence to Paresh Kale.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muduli, S.P., Kale, P. Effect of diffusion doping-induced defects on shunt resistance affecting Si-nanowire solar cell performance. J Mater Sci: Mater Electron 35, 430 (2024). https://doi.org/10.1007/s10854-024-12190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12190-7

Navigation