Skip to main content

Advertisement

Log in

Improved visible light response photocatalytic activity of CuWO4/g-C3N4 nanocomposites for degradation of organic dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, the high performance visible light induced photocatalytic performance of CuWO4/g-C3N4 hybrid was photocatalysts by facile hydrothermal method. The structural order of the obtained catalysts was performed through X-ray diffraction and Raman analysis, which exposed the monoclinic phase (JCPDS Card No. 83-0951). The clear sheet like with wrinkle shape and spherical nanoparticles (30–35 nm) was found to be g-C3N4 and CuWO4 samples, which is obtained by SEM and TEM analysis. The g-C3N4 modified CuWO4 sample showed huge surface area (108 m2 g−1) and high porous nature (32.53 nm), which is identified by BET method. The significant reduction in the band gap (2.91–2.33 eV) and suppress the recombination rate of electron–hole pairs was also identified by UV–Vis absorption and Photoluminescence spectra results. The optimized ratio (3:1) of composite sample (CWG3) displayed high photocatalytic activity of RhB such as huge efficiency (95%), high first order kinetics (is 0.0913 min−1) and long term stability (loss only 3.2). This might be attributed to the coactions between the CuWO4 nanoparticles over the surface of g-C3N4 nanosheets. Moreover, slighter reduction in the band gap energy and privilege the reduction to the recombination process of electron–hole pairs are the important factors to enhancing the photocatalytic capability of the composite catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. D. Hu, R. Li, M. Li, J. Pei, B. Zhou, F. Guo, Enhanced photocatalytic efficiencies of TiO2 nanoparticles loaded with WO3 and pt for exhaust decomposition. Mater. Res. Express. 6, 015047 (2018)

    Article  Google Scholar 

  2. T.Y. Wang, S.H. Yang, K. Sun, X.F. Fang, Preparation of Pt/beta zeolite-Al2O3/ cordierite monolith for automobile exhaust purification. Ceram. Int. 37, 621–626 (2011)

    Article  Google Scholar 

  3. W.G. Zhang, Y.X. Zhang, Z.R. Jia, F. Wang, L.T. Ding, Test method and material design of asphalt mixture with the function of photocatalytic decomposition of automobile exhaust. Constr. Build. Mater. 215, 298–309 (2019)

    Article  CAS  Google Scholar 

  4. R.L. Shengchao, C. Cui, J. Zhu, Y. Pei, Wen, Cerium-bismuth solid solution material prepared and application in automobile exhaust purification. Sep. Purif. Technol. 239, 116520 (2020)

    Article  Google Scholar 

  5. A. Nikokavoura, C. Trapalis, Graphene and g-C3N4 based photocatalysts for NOx removal a review. Appl. Surf. Sci. 430, 18–52 (2017)

    Article  Google Scholar 

  6. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)

    Article  CAS  Google Scholar 

  7. S. Cui, R. Li, W. Ma, M. Li, J. Cui, J. Pei, Preparation, photocatalytic properties investigation and degradation rate study on nano-TiO2 aerogels doped with Fe3+ for automobile emission purification. Mater. Res. Express. 5, 115513 (2018)

    Article  Google Scholar 

  8. A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    Article  CAS  Google Scholar 

  9. D. Hu, R. Li, M. Li, J. Pei, F. Guo, S. Zhang, Photocatalytic efficiencies of WO3/TiO2 nanoparticles for exhaust decomposition under UV and visible light irradiation. Mater. Res. Express. 5, 095029 (2018)

    Article  Google Scholar 

  10. X.H. Ding, Y.C. Li, C.H. Li, W.T. Wang, L. Wang, L.J. Feng, D.Z. Han, 2D visible light-driven TiO2@Ti3C2/g-C3N4 ternary heterostructure for high photocatalytic activity. J. Mater. Sci. 54, 9385–9396 (2019)

    Article  CAS  Google Scholar 

  11. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51, 68–89 (2012)

    Article  CAS  Google Scholar 

  13. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397–10401 (2009)

    Article  CAS  Google Scholar 

  14. Z. Zhang, R. Xu, Z. Wang, M. Dong, B. Cui, M. Chen, Visible light neural stimulation on graphitic-carbon nitride/graphene photocatalytic fibers. ACS Appl. Mater. Interfaces 9, 34736–34743 (2017)

    Article  CAS  Google Scholar 

  15. J. Zhang, F. Ren, M. Deng, Y. Wang, Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study. Phys. Chem. Chem. Phys. 17, 10218–10226 (2015)

    Article  CAS  Google Scholar 

  16. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, M. Antonietti, Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131, 1680–1681 (2009)

    Article  CAS  Google Scholar 

  17. C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 22, 1518–1524 (2012)

    Article  CAS  Google Scholar 

  18. L. Sun, X. Zhao, C.J. Jia, Y. Zhou, X. Cheng, P. Li, W. Fan, Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. J. Mater. Chem. 22, 23428–23438 (2012)

    Article  CAS  Google Scholar 

  19. J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/ g-C3N4 nanowires. ACS Appl. Mater. Interfaces. 5, 10317–10324 (2013)

    Article  CAS  Google Scholar 

  20. S.A. Ansari, M.H. Cho, Growth of three-dimensional flower-like SnS2 on g-C3N4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material. Sustain. Energy Fuels. 1, 510–519 (2017)

    Article  CAS  Google Scholar 

  21. H. Yan, H. Yang, TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 509, L26–L29 (2011)

    Article  CAS  Google Scholar 

  22. Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4, 2922–2929 (2011)

    Article  CAS  Google Scholar 

  23. Y. Wang, Z. Wang, S. Muhammad, J. He, Graphite-like C3N4 hybridized ZnWO4 nanorods: synthesis and its enhanced photocatalysis in visible light. CrystEngComm. 14, 5065–5070 (2012)

    Article  CAS  Google Scholar 

  24. S. Yousefzadeh, Effect of thermal condensation temperature on electrochemical capacitive properties of g-C3N4 supported on reduced TiO2 nanowires/nanotubes array. J. Alloys Compd. 785, 1–6 (2019)

    Article  CAS  Google Scholar 

  25. M. Mousavi, A. Habibi-Yangjeh, Integration of NiWO4 and Fe3O4 with graphitic carbon nitride to fabricate novel magnetically recoverable visible-light-driven photocatalysts. J. Mater. Sci. 53, 9046–9063 (2018)

    Article  CAS  Google Scholar 

  26. S.K. Pilli, T.G. Deutsch, T.E. Furtak, L.D. Brown, J.A. Turner, A.M. Herring, BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation. Phys. Chem. Chem. Phys. 15, 3273–3278 (2013)

    Article  CAS  Google Scholar 

  27. J. Ruiz-Fuertes, M. Sanz-Ortiz, J. González, F. Rodríguez, A. Segura, D. Errandonea, Optical absorption and Raman spectroscopy of CuWO4. J. Phys. Conf. Ser., 012048 (2010)

  28. J.E. Yourey, B.M. Bartlett, Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J. Mater. Chem. 21, 7651–7660 (2011)

    Article  CAS  Google Scholar 

  29. B.M. Weckhuysen, R.A. Schoonheydt, Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catal. Today. 49, 441–451 (1999)

    Article  CAS  Google Scholar 

  30. Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 6, 19221 (2016)

    Article  CAS  Google Scholar 

  31. T.Y. Ma, J. Ran, S. Dai, M. Jaroniec, S.Z. Qiao, Phosphorus-Doped Graphitic Carbon Nitrides grown in situ on Carbon‐Fiber Paper: flexible and reversible oxygen electrodes. Angew. Chem. Int. Ed. 54, 4646–4650 (2015)

    Article  CAS  Google Scholar 

  32. R. Blume, D. Rosenthal, J.P. Tessonnier, H. Li, A. Knop-Gericke, R. Schlögl, Characterizing graphitic carbon with X-ray photoelectron spectroscopy: a step-by-step approach. ChemCatChem. 7, 2871–2881 (2015)

    Article  CAS  Google Scholar 

  33. M. Samadi, H.A. Shivaee, A. Pourjavadi, A.Z. Moshfegh, Synergism of oxygen vacancy and carbonaceous species on enhanced photocatalytic activity of electrospun ZnO-carbon nanofibers: charge carrier scavengers mechanism. Appl. Catal. A. 466, 153–160 (2013)

    Article  CAS  Google Scholar 

  34. B.M. Rajbongshi, A. Ramchiary, S.K. Samdarshi, Influence of N-doping on photocatalytic activity of ZnO nanoparticles under visible light irradiation. Mater. Lett. 134, 111–114 (2014)

    Article  CAS  Google Scholar 

  35. G. Zhu, X. Li, H. Wang, L. Zhang, Microwave assisted synthesis of reduced graphene oxide incorporated MOF-derived ZnO composites for photocatalytic application. Catal. Commun. 88, 5–8 (2017)

    Article  CAS  Google Scholar 

  36. S. Kuriakose, B. Satpati, S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 17, 25172–25181 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

VR and KSM—study conceptualization and writing (original draft) the manuscript. RS and AS—data curation, formal analysis and writing (review and editing), and funding acquisition and project administration.

Corresponding author

Correspondence to V. Rathi.

Ethics declarations

Conflict of interest 

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 431.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathi, V., Mohan, K.S., Sathiyapriya, R. et al. Improved visible light response photocatalytic activity of CuWO4/g-C3N4 nanocomposites for degradation of organic dyes. J Mater Sci: Mater Electron 34, 1629 (2023). https://doi.org/10.1007/s10854-023-10996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10996-5

Navigation