Skip to main content
Log in

Chemical deposition of Ag and Ag2O on grafting film of PET-COOH by photografting polymerization for optoelectronic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly flexible photodetector with a great efficiency related to its highly response to the photons is prepared with simple techniques and low costs. This optoelectronic is based on the photografting acrylic acid is utilized to adjust the surface of PET films to fasten with silver ions. Ag and Ag2O were formed onto the surface of the photografting PET with acrylic acid after reducing by sodium boron tetrahydrate. The topography and chemical structure of the pristine PET-COOH and PET-COOH/Ag-Ag2O films is characterized using scanning electron microscope (SEM), X-ray diffractometer, energy-dispersive X-ray analysis (EDX), and Fourier transform infrared spectroscopy. From the SEM analyses, the formation of nanomaterials with an average particle size of 100 nm is confirmed. The incorporation of Ag-Ag2O in the PET-COOH membrane enhances the optical properties that cover all the optical absorbance regions, with a small bandgap of 2.74 eV. The PET-COOH/Ag-Ag2O photodetector had a nonohmic character and it was sensitive to monochromatic wavelength. The responsivity and specific detectivity of PET-COOH/Ag-Ag2O photodetector were 0.83 mA/W and 1.9 × 1011 Jones, respectively, for 390 nm monochromatic wavelengths. Soon, our team works on synthesis a prototype of this optoelectronic device for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.G. Hammed, A. Abd Hassan. Enhancement of the structural and optical properties of (PVA-PANI) polymer blend by addition of CuI nanoparticles. In IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing

  2. X. Zhang et al., Flexible narrowband ultraviolet photodetectors with photomultiplication based on wide band gap conjugated polymer and inorganic nanoparticles. ACS Appl. Mater. Interfaces 10(28), 24064–24074 (2018)

    Article  CAS  Google Scholar 

  3. J. Loste et al., Transparent polymer nanocomposites: an overview on their synthesis and advanced properties. Prog. Polym. Sci. 89, 133–158 (2019)

    Article  CAS  Google Scholar 

  4. S. Li et al., Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010)

    Article  Google Scholar 

  5. M. Abdelhamied et al., Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. J. Mater. Sci. Mater. Electron. 31(24), 22629–22641 (2020)

    Article  CAS  Google Scholar 

  6. V. Satulu et al., Combining fluorinated polymers with Ag nanoparticles as a route to enhance optical properties of composite materials. Polymers 12(8), 1640 (2020)

    Article  CAS  Google Scholar 

  7. M. Abdolahifard, S.H. Bahrami, R. Malek, Surface modification of PET fabric by graft copolymerization with acrylic acid and its antibacterial properties. Int. Sch. Res. Not. 2011, 1 (2011)

    Google Scholar 

  8. M. Benkocká et al., Antimicrobial and optical properties of PET chemically modified and grafted with borane compounds. RSC Adv. 8(27), 15001–15008 (2018)

    Article  Google Scholar 

  9. Y.-W. Song et al., Effect of grafting of acrylic acid onto PET film surfaces by UV irradiation on the adhesion of PSAs. J. Adhes. Sci. Technol. 20(12), 1357–1365 (2006)

    Article  CAS  Google Scholar 

  10. T. Han et al., Lateral polymer photodetectors using silver nanoparticles promoted PffBT4T-2OD: PC61BM composite. ACS Photonics 5(11), 4650–4659 (2018)

    Article  CAS  Google Scholar 

  11. S. Huang et al., A flexible and transparent ceramic nanobelt network for soft electronics. NPG Asia Mater. 6(2), e86–e86 (2014)

    Article  CAS  Google Scholar 

  12. B. Tylkowski et al., Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes. Phys. Sci. Rev. 2(7), 1–16 (2017)

    Google Scholar 

  13. C. Tian et al., Performance enhancement of ZnO UV photodetectors by surface plasmons. ACS Appl. Mater. Interfaces 6(3), 2162–2166 (2014)

    Article  CAS  Google Scholar 

  14. J.M. Melancon, S.R. Živanović, Broadband gain in poly (3-hexylthiophene): phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer. Appl. Phys. Lett. 105(16), 162_1 (2014)

    Article  Google Scholar 

  15. Y. Fang et al., Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 dB. Adv. Opt. Mater. 2(4), 348–353 (2014)

    Article  CAS  Google Scholar 

  16. W.M. Shume, H. Murthy, E.A. Zereffa, A review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications. J. Chem. 2020, 1 (2020)

    Article  Google Scholar 

  17. M. Abdelhamied, A. Abdelreheem, A. Atta, Influence of ion beam and silver nanoparticles on dielectric properties of flexible PVA/PANI polymer composite films. Plast. Rubber Compos. 51(1), 1–12 (2022)

    Article  CAS  Google Scholar 

  18. L. Tang, F. Duan, M. Chen, Silver nanoparticle decorated polyaniline/multiwalled super-short carbon nanotube nanocomposites for supercapacitor applications. RSC Adv. 6(69), 65012–65019 (2016)

    Article  CAS  Google Scholar 

  19. L. Deng et al., Synthesis of Ag2O and Ag co-modified flower-like SnS2 composites with enhanced photocatalytic activity under solar light irradiation. Solid State Sci. 63, 76–83 (2017)

    Article  CAS  Google Scholar 

  20. T. Han et al., Light-activated electric bistability for evaporated silver nanoparticles in organic field-effect transistors. Phys. Chem. Chem. Phys. 19(27), 17653–17660 (2017)

    Article  CAS  Google Scholar 

  21. Z. Shi, K. Neoh, E. Kang, Surface-grafted viologen for precipitation of silver nanoparticles and their combined bactericidal activities. Langmuir 20(16), 6847–6852 (2004)

    Article  CAS  Google Scholar 

  22. X. Jiang, Q. Zeng, A. Yu, Thiol-frozen shape evolution of triangular silver nanoplates. Langmuir 23(4), 2218–2223 (2007)

    Article  CAS  Google Scholar 

  23. A. Himanshu et al., Electrical studies of low energy Ar9+ irradiated conducting polymer PANI–PVA. Radiat. Phys. Chem. 80(3), 414–419 (2011)

    Article  CAS  Google Scholar 

  24. M.A. Awad, M. Shaban, M. Rabia, The efficiency of M (M = Li, Na, or Cs) doped CdS nanomaterials in optoelectronic applications. Int. J. Energy Res. 46(6), 8443–8451 (2022)

    Article  CAS  Google Scholar 

  25. S.L. Nasiri et al., Potential perspectives of CMC-PET/ZnO bilayer nanocomposite films for food packaging applications: physical, mechanical and antimicrobial properties. J. Food Meas. Charact. 15(4), 3731–3740 (2021)

    Article  Google Scholar 

  26. A.P.D.S. Pereira et al., Processing and characterization of PET composites reinforced with geopolymer concrete waste. Mater. Res. 20, 411–420 (2017)

    Article  Google Scholar 

  27. M.M. Ghobashy, Combined ultrasonic and gamma-irradiation to prepare TiO2@ PET-g-PAAc fabric composite for self-cleaning application. Ultrason. Sonochem. 37, 529–535 (2017)

    Article  CAS  Google Scholar 

  28. A. Agrawal, V. Rangarajan, PET/CT in lung cancer (Springer, Berlin, 2018)

    Book  Google Scholar 

  29. B. Mallick, Analysis of strain-induced crystallinity in neutron-irradiated amorphous PET fiber. Appl. Phys. A 119(2), 653–657 (2015)

    Article  CAS  Google Scholar 

  30. G.S. Bhat, S.R. Malkan, Extruded continuous filament nonwovens: advances in scientific aspects. J. Appl. Polym. Sci. 83(3), 572–585 (2002)

    Article  CAS  Google Scholar 

  31. N. Althubiti et al., Oxygen irradiation induced modification on the linear and nonlinear optical behavior of flexible MC/PANI/Ag polymeric nanocomposite films. Inorg. Chem. Commun. 137, 109229 (2022)

    Article  CAS  Google Scholar 

  32. J. Wei et al., Controlled in situ fabrication of Ag2O/AgO thin films by a dry chemical route at room temperature for hybrid solar cells. Dalton Trans. 43(29), 11333–11338 (2014)

    Article  CAS  Google Scholar 

  33. S. Akel et al., Ag/Ag2O as a co-catalyst in TiO2 photocatalysis: effect of the co catalyst/photocatalyst mass ratio. Catalysts 8(12), 647 (2018)

    Article  Google Scholar 

  34. T. Wang et al., Ag2O/TiO2 hollow microsphere heterostructures with exposed high-energy {001} crystal facets and high photocatalytic activities. J. Mater. Sci. Mater. Electron. 31(14), 11496–11507 (2020)

    Article  CAS  Google Scholar 

  35. A. Al-Sarraj et al., Optoelectronic properties of highly porous silver oxide thin film. SN Appl. Sci. 3(1), 1–13 (2021)

    Article  Google Scholar 

  36. B. Gauri et al., Synthesis and characterization of Ag/AgO nanoparticles as alcohol sensor. Res. J. Chem. Environ. 20(10), 1–5 (2016)

    CAS  Google Scholar 

  37. J. Pan et al., Nano silver oxide (AgO) as a super high charge/discharge rate cathode material for rechargeable alkaline batteries. J. Mater. Chem. 17(45), 4820–4825 (2007)

    Article  CAS  Google Scholar 

  38. K. Kashihara, Y. Uto, T. Nakajima, Rapid in situ synthesis of polymer-metal nanocomposite films in several seconds using a CO2 laser. Sci. Rep. 8(1), 1–8 (2018)

    Article  CAS  Google Scholar 

  39. M.M. Abdelhamied et al., Boosting the photoluminescence of 2D organic–inorganic perovskite films by mixing with polymers. Appl. Phys. A 128(1), 1–9 (2022)

    Article  Google Scholar 

  40. Y. Khairy, I. Yahia, A.H. Elhosiny, Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-off laser devices. J. Mater. Sci. Mater. Electron. 31(10), 8072–8085 (2020)

    Article  CAS  Google Scholar 

  41. N.A. Althubiti et al., Structural and dielectric properties of ion beam irradiated polymer/silver composite films. Surf. Innov. 40, 1–11 (2022)

    Google Scholar 

  42. H. Zeyada, M. El-Nahass, M. El-Shabaan, Gamma-ray irradiation induced structural and optical constants changes of thermally evaporated neutral red thin films. J. Mater. Sci. 47(1), 493–502 (2012)

    Article  CAS  Google Scholar 

  43. H.S. Mohamed et al., Controlled synthesis of CdS nanoflowers thin films for H2 electro-generation. Mater. Sci. Semicond. Process. 120, 105307 (2020)

    Article  CAS  Google Scholar 

  44. M. Shaban et al., Optimization of the active layer P3HT: PCBM for organic solar cell. Coatings 11(7), 863 (2021)

    Article  CAS  Google Scholar 

  45. M. Shaban et al., Preparation and characterization of polyaniline and Ag/polyaniline composite nanoporous particles and their antimicrobial activities. J. Polym. Environ. 26(2), 434–442 (2018)

    Article  CAS  Google Scholar 

  46. H.S. Mohamed et al., Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation. J. Mater. Sci. Technol. 83, 179–187 (2021)

    Article  CAS  Google Scholar 

  47. Z. Liu et al., Fabrication of UV photodetector on TiO2/diamond film. Sci. Rep. 5(1), 1–7 (2015)

    Google Scholar 

  48. Q. Hu et al., High-responsivity photodetector based on a suspended monolayer graphene/RbAg4I5 composite nanostructure. ACS Appl. Mater. Interfaces 12(45), 50763–50771 (2020)

    Article  CAS  Google Scholar 

  49. A.M. Elsayed et al., Preparation of hexagonal nanoporous Al2O3/TiO2/TiN as a novel photodetector with high efficiency. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  50. C. Ji, K. Kim, S. Oh, High-detectivity perovskite-based photodetector using a Zr-doped TiOx cathode interlayer. RSC Adv. 8(15), 8302–8309 (2018)

    Article  CAS  Google Scholar 

  51. A.A.A. Abdelazeez et al., Development of CuO nanoporous material as a highly efficient optoelectronic device. Appl. Phys. A 128(4), 1–10 (2022)

    Article  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant no. (DSR-2021-03-0317).

Author information

Authors and Affiliations

Authors

Contributions

MMA and MMG contributed to methodology and writing—review and editing. NMAH contributed to supervision and writing—original draft. WSM contributed to methodology and investigation. AIS contributed to methodology, investigation, formal analysis, and editing. NN contributed to conceptualization, methodology, and writing—review and editing. SHM contributed to conceptualization, methodology, and investigation. MS contributed to writing—original draft. MS contributed to conceptualization, methodology, investigation, and formal analysis.

Corresponding author

Correspondence to N. M. A. Hadia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhamied, M.M., Ghobashy, M.M., Hadia, N.M.A. et al. Chemical deposition of Ag and Ag2O on grafting film of PET-COOH by photografting polymerization for optoelectronic application. J Mater Sci: Mater Electron 34, 41 (2023). https://doi.org/10.1007/s10854-022-09474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09474-1

Navigation