Skip to main content
Log in

Effect of piezoelectric coefficient and dielectric constant on the performance of polymer nanocomposite piezoelectric nanogenerator

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performance of polyvinylidene fluoride (PVDF)-based piezoelectric nanogenerator (PENG) directly depends upon the piezoelectric property of PVDF. The most effective and simple approach to the piezoelectric property of PVDF is by adding nanofillers into its matrix. However, the addition of nanofillers in PVDF modifies its piezoelectric coefficient (d33) and also to relative permittivity (εr), thereby affecting the overall performance of PENG. In the present work, we have demonstrated a detailed theoretical analysis of the performance of PENG, using COMSOL MULTIPHYSICS 5.5 to elucidate the role of external force shapes, piezoelectric coefficient (d33), and relative permittivity (ε33) on the open-circuit voltage (VOC) and short-circuit current (ISC) of PVDF nanocomposite film based PENG. It was found that the PENG exhibits maximum output performances under the action of square-shaped force. The open-circuit voltage (VOC) is linearly dependent on the ratio between d33 and εr, whereas the short-circuit current (ISC) is independent of εr. An increasing d33 leads to enhancement of both VOC and ISC; however, enhancement of εr reduced the VOC because of the capacitive effect of PENG. The simulated performance of PVDF nanocomposite-based PENG has been compared with recently published experimental results, and a good agreement has been observed between the simulated and experimental results, which validates our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. F. Zhang, Y. Zang, D. Huang, C. Di, D. Zhu, Frame-supported organic thermoelectric materials. Nat. Commun. 6, 1–10 (2015). https://doi.org/10.1038/ncomms9356

    Article  CAS  Google Scholar 

  2. G. Zhu, B. Peng, J. Chen, Q. Jing, Z. Lin, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy. 14, 126–138 (2015). https://doi.org/10.1016/j.nanoen.2014.11.050

    Article  CAS  Google Scholar 

  3. S.K. Ghosh, Dipankar, nanogenerator made with fish scale. Appl. Phys. Lett. 109, 103701 (2018). https://doi.org/10.1063/1.4961623

    Article  CAS  Google Scholar 

  4. S. Bai, Q. Xu, L. Gu, F. Ma, Y. Qin, L. Wang, Single crystalline lead zirconate titanate (PZT) nano / micro-wire based self-powered UV sensor. Nano Energy 1, 789–795 (2012). https://doi.org/10.1016/j.nanoen.2012.09.001

    Article  CAS  Google Scholar 

  5. Y.-K. Fuh, S.-C. Li, C.-Y. Chen, Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection. APL Mater. 5, 074202–074209 (2017). https://doi.org/10.1063/1.4978913

    Article  CAS  Google Scholar 

  6. C. Zhang, W. Wei, H. Sun, Q. Zhu, Performance enhancements in poly(vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process. J. Mater. Sci. Mater. Electron. 32(17), 21837–21847 (2021). https://doi.org/10.1007/s10854-021-06416-1

    Article  CAS  Google Scholar 

  7. Q. Li, J. Zhao, B. He, Z. Hu, Solution processable poly(vinylidene fluoride)-based ferroelectric polymers for flexible electronics. APL Mater. 9, 010902 (2021). https://doi.org/10.1063/5.0035539

    Article  CAS  Google Scholar 

  8. G.H. Teoh, B.S. Ooi, Z.A. Jawad, S.C. Low, Impacts of PVDF polymorphism and surface printing micro-roughness on superhydrophobic membrane to desalinate high saline water. J. Environ. Chem. Eng. 9, 105418 (2021). https://doi.org/10.1016/j.jece.2021.105418

    Article  CAS  Google Scholar 

  9. M. Zeyrek Ongun, S. Oguzlar, E.C. Doluel, U. Kartal, M. Yurddaskal, Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO. J. Mater. Sci. Mater. Electron. 31(3), 1960–1968 (2020). https://doi.org/10.1007/s10854-019-02715-w

    Article  CAS  Google Scholar 

  10. J. Lim, H.S. Kim, Effects of SWCNT/PVDF composite web behavior on acoustic piezoelectric property. Sens. Actuators Phys. 330, 112840 (2021). https://doi.org/10.1016/j.sna.2021.112840

    Article  CAS  Google Scholar 

  11. A.M. AlAhzm, M.O. Alejli, D. Ponnamma, Y. Elgawady, M.A.A. Al-Maadeed, Piezoelectric properties of zinc oxide/iron oxide filled polyvinylidene fluoride nanocomposite fibers. J. Mater. Sci. Mater. Electron. 32(11), 14610–14622 (2021). https://doi.org/10.1007/s10854-021-06020-3

    Article  CAS  Google Scholar 

  12. L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators. Nano Energy. 78, 105251 (2022). https://doi.org/10.1016/j.nanoen.2020.105251

    Article  CAS  Google Scholar 

  13. D. Chen, K. Chen, K. Brown, A. Hang, J.X.J. Zhang, Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting. Appl. Phys. Lett. 110, 153902 (2017). https://doi.org/10.1063/1.4980130

    Article  CAS  Google Scholar 

  14. Z. Mokhtari-Shourijeh, S. Langari, L. Montazerghaem, N.M. Mahmoodi, Synthesis of porous aminated PAN/PVDF composite nanofibers by electrospinning: characterization and Direct Red 23 removal. J. Environ. Chem. Eng. 8, 103876 (2020). https://doi.org/10.1016/j.jece.2020.103876

    Article  CAS  Google Scholar 

  15. H.H. Singh, S. Singh, N. Khare, Enhanced β - phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym. Adv. Technol. Technol. 29, 1–8 (2017). https://doi.org/10.1002/pat.4096

    Article  CAS  Google Scholar 

  16. Y. Yang, H. Pan, G. Xie, Y. Jiang, C. Chen, Y. Su, Y. Wang, H. Tai, Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators Phys. 301, 11178 (2020). https://doi.org/10.1016/j.sna.2019.111789

    Article  CAS  Google Scholar 

  17. P.D. Prasad, J. Hemalatha, Enhanced dielectric and ferroelectric properties of cobalt ferrite (CoFe2O4) fiber embedded polyvinylidene fluoride (PVDF) multiferroic composite films. Mater. Res. Express 6, 0–10 (2021). https://doi.org/10.1088/2053-1591/ab30af

    Article  CAS  Google Scholar 

  18. S. Ojha, S. Paria, S. Karan, S. Si, A. Maitra, A. Das, L. Halder, A. Bera, A. De, B.B. Khatua, Morphological interference of two different cobalt oxides derived from a hydrothermal protocol and a single two-dimensional metal organic framework precursor to stabilize the β-phase of PVDF for flexible piezoelectric nanogenerators. Nanoscale 11, 22989–22999 (2019). doi:https://doi.org/10.1039/c9nr08315d

    Article  CAS  Google Scholar 

  19. S. Mondal, T. Paul, S. Maiti, B.K. Das, K.K. Chattopadhyay, Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy. 74, 1–12 (2020). https://doi.org/10.1016/j.nanoen.2020.104870

    Article  CAS  Google Scholar 

  20. M. Hasanzadeh, M.R. Ghahhari, S.M. Bidoki, Enhanced piezoelectric performance of PVDF-based electrospun nanofibers by utilizing in situ synthesized graphene-ZnO nanocomposites. J. Mater. Sci. Mater. Electron. 32(12), 15789–15800 (2021). https://doi.org/10.1007/s10854-021-06132-w

    Article  CAS  Google Scholar 

  21. A. Rajhans, P.M. Gore, S.K. Siddique, B. Kandasubramanian, Ion-imprinted nanofibers of PVDF/1-butyl-3-methylimidazolium tetrafluoroborate for dynamic recovery of europium (III) ions from mimicked effluent. J. Environ. Chem. Eng. 7, 103068 (2019). https://doi.org/10.1016/j.jece.2019.103068

    Article  CAS  Google Scholar 

  22. D. Yang, Y. Qiu, S. Fang, W. Song, Simulation study on piezoelectric characteristics of two-dimensional ZnO nanodiscs. Micro. Nano Lett. 14, 1029–1032 (2019). https://doi.org/10.1049/mnl.2019.0165

    Article  CAS  Google Scholar 

  23. Q. Xu, Y. Qin, Theoretical study of enhancing the piezoelectric nanogenerator’s output power by optimizing the external force’s shape. APL Mater. 5, 074101 (2017). https://doi.org/10.1063/1.4975772

    Article  CAS  Google Scholar 

  24. W. Zhou<bi>,</bi> Z. Wang<bi>,</bi> L. Dong<bi>,</bi> X. Sui<bi>,</bi> Q. Chen, Dielectric properties and thermal conductivity of PVDF reinforced with three types of ZnO particles<bi>.</bi>. Compos. A 79, 183–191 (2015). https://doi.org/10.1016/j.compositesa.2015.09.004 ,

    Article  CAS  Google Scholar 

  25. P. Thakur, A. Kool, N.A. Hoque, B. Baghchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, S. Das, Nano Energy Superior performances of in situ synthesized ZnO / PVDF thin fi lm based self- poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy. 44, 456–467 (2018). https://doi.org/10.1016/j.nanoen.2017.11.065

    Article  CAS  Google Scholar 

  26. H.H. Singh, N. Khare, Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity. Energy. 178, 765–771 (2019). https://doi.org/10.1016/j.energy.2019.04.150

    Article  CAS  Google Scholar 

  27. S. Dwivedi, M. Badole, T. Pareek, S. Kumar, Multifunctional lead-free K0.5Bi0.5TiO3-based ceramic reinforced PVDF matrix composites. J. Alloys Compd. 871, 1–12 (2021). https://doi.org/10.1016/j.jallcom.2021.159616

    Article  CAS  Google Scholar 

  28. H. Parangusan, D. Ponnamma, M.A.A. Almaadeed, Toward High Power Generating Piezoelectric Nanofibers, Influence of particle size and surface Electrostatic Interaction of Ce-Fe2O3 and Ce-Co3O4 on PVDF. ACS Omega 4, 6312–6323 (2019). https://doi.org/10.1021/acsomega.9b00243

    Article  CAS  Google Scholar 

  29. S. Pratihar, S.K. Medda, S. Sen, P.S. Devi, Tailored piezoelectric performance of self-polarized PVDF-ZnO composites by optimization of aspect ratio of ZnO nanorods. Polym. Compos. 41, 3351–3363 (2020). https://doi.org/10.1002/pc.25624

    Article  CAS  Google Scholar 

  30. H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, Stretchable Electrospun PVDF-HFP/Co-ZnO nanofibers as Piezoelectric Nanogenerators. Sci. Rep. 8, 1–11 (2018). https://doi.org/10.1038/s41598-017-19082-3

    Article  CAS  Google Scholar 

  31. N. Chakhchaoui, H. Ennamiri, A. Hajjaji, A. Eddiai, M. Meddad, Y. Boughaleb, Theoretical modeling of piezoelectric energy harvesting in the system using technical textile as a support. Polym. Adv. Technol. 28, 1170–1178 (2017). https://doi.org/10.1002/pat.4010

    Article  CAS  Google Scholar 

  32. N. Chakhchaoui, H. Jaouani, H. Ennamiri, A. Eddiai, A. Hajjaji, M. Meddad, L.V. Langenhove, Y. Boughaleb, Modeling and analysis of the effect of substrate on the flexible piezoelectric films for kinetic energy harvesting from textiles. J. Compos. Mater. 24, 3349 (2019). https://doi.org/10.1177/0021998318808869

    Article  CAS  Google Scholar 

  33. V.L. Stuber, D.B. Deutz, J. Bennett, D. Cannel, DMd. Leeuw, S.V.D. Zwaag, P. Groen, Flexible lead-free Piezoelectric Composite materials for energy harvesting applications. Energy Technol. 7, 177–185 (2019). https://doi.org/10.1002/ente.201800419

    Article  CAS  Google Scholar 

  34. D.B. Deutz, N.T. Mascarenhas, J.B.J. Schelen, D.M. de Leeuw, S. van der Zwaag, P. Groen, Flexible piezoelectric touch sensor by alignment of lead-free Alkaline Niobate Microcubes in PDMS. Adv. Funct. Mater. 27, 1–7 (2017). https://doi.org/10.1002/adfm.201700728

    Article  CAS  Google Scholar 

  35. I. Chinya, A. Sasmal, S. Sen, Conducting polyaniline decorated in-situ poled Ferrite nanorod-PVDF based nanocomposite as piezoelectric energy harvester. J. Alloys Compd. 815, 152312 (2020). https://doi.org/10.1016/j.jallcom.2019.152312

    Article  CAS  Google Scholar 

  36. P.D. Prasad, J. Hemalatha, Multifunctional films of poly(vinylidene fluoride)/ZnFe2O4 nanofibers for nanogenerator applications. J. Alloys Compd. 854, 157189 (2021). https://doi.org/10.1016/j.jallcom.2020.157189

    Article  CAS  Google Scholar 

  37. A. Tuluk, T. Mahon, S. van der Zwaag, P. Groen, Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites. J. Alloys Compd. 868, 159186 (2021). https://doi.org/10.1016/j.jallcom.2021.159186

    Article  CAS  Google Scholar 

  38. K. Yu, S. Hu, J. Tan, W. Yu, Dielectric and piezoelectric properties of (K0.475Na0.495Li0.03) NbO3-0.003ZrO2/PVDF 0–3 composite reinforced with two types of nano-ZnO particles. J. Mater. Sci. Mater. Electron. 31, 1367–1381 (2020). https://doi.org/10.1007/s10854-019-02650-w

    Article  CAS  Google Scholar 

  39. S.K. Karan, R. Bera, S. Paria, A.K. Das, S. Maiti, A. Maitra, Khatua, An Approach to Design highly durable Piezoelectric Nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with High Power Density and Energy Conversion Efficiency. Adv. Energy Mater. 6, 1–12 (2016). https://doi.org/10.1002/aenm.201601016

    Article  CAS  Google Scholar 

  40. H.K. Mishra, V. Gupta, K. Roy, A. Babu, A. Kumar, D. Mandal,, revisiting of δ- PVDF nanoparticles via phase separation with giant piezoelectric response for the realization of self-powered biomedical sensors. Nano Energy 95, 107052 (2022). https://doi.org/10.1016/j.nanoen.2022.107052

    Article  CAS  Google Scholar 

  41. S. Cao, H. Zou, B. Jiang, M. Li, Q. Yuan,, incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor. Nano Energy 102, 107635 (2022). https://doi.org/10.1016/j.nanoen.2022.107635

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the funding support from the NNetRA project (RP03530) from MeitY and DST (Govt. of India). One of us (A. Mondal) acknowledges the Council of Scientific and Industrial Research, India (CSIR), New Delhi, for a junior research fellowship (JRF) Grant.

Author information

Authors and Affiliations

Authors

Contributions

AM: writing – original draft, investigation. HHS: methodology and NK: supervision and writing – review & editing.

Corresponding author

Correspondence to Neeraj Khare.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Singh, H.H. & Khare, N. Effect of piezoelectric coefficient and dielectric constant on the performance of polymer nanocomposite piezoelectric nanogenerator. J Mater Sci: Mater Electron 34, 314 (2023). https://doi.org/10.1007/s10854-022-09415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09415-y

Navigation