Skip to main content

Advertisement

Log in

Synthesis and electrochemical performance of MgFe2O4 with g-C3N4 on Ni-foam as composite anode material in supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study aimed to improve the electrochemical performance of MgFe2O4 (MFO) by combining it with g-C3N4 (g-CN). The hydrothermal process was used to produce electrodes directly on the nickel foam surface. XRD, FTIR, SEM, and TEM analyses were made to describe the electrodes in detail. CV, GCD, and EIS measurements were performed electrochemically at various scanning rates and current densities. According to the findings, g-CN-MFO electrode was successfully synthesized in spongy structure on Ni-foams. The areal capacitance (Ca) of g-CN-MFO was measured as 600 mF/cm2, which is 152% higher than MFO. At the same time, the energy and power densities of g-CN-MFO were calculated to be 13.3 mWh/cm2 and 200 mW/cm2 at 1 mA, respectively. EIS results showed that this increase was probably due to easier diffusion of electrolyte ions onto the electrode surface. As a result, the g-CN-MFO electrode can be considered a promising anode material for supercapacitors due to its low cost, ease of fabrication, and strong electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This manuscript has no associated data in a data repository. The data generated in this paper are available from the authors upon request.

References

  1. Y. Chen, Z. Zhang, Z. Huang, H. Zhang, Int. J. Hydrogen Energy 42, 7186 (2017)

    Article  CAS  Google Scholar 

  2. L. Zhu, I.-J. Kim, S.-H. Yang, W.-C. Oh, Fullerenes Nanotubes Carbon Nanostruct. 24, 446 (2016)

    Article  CAS  Google Scholar 

  3. T. Zhao, S. Guo, X. Ji, Y. Zhao, X. Wang, Y. Cheng, J. Meng, Fullerenes Nanotubes Carbon Nanostruct. 25, 391 (2017)

    Article  CAS  Google Scholar 

  4. Z. Çıplak, N. Yıldız, Fullerenes Nanotubes Carbon Nanostruct. 27, 65 (2019)

    Article  Google Scholar 

  5. B. Palanivel, S. Devi MudisoodumPerumal, T. Maiyalagan, V. Jayarman, C. Ayyappan, M. Alagiri, Appl. Surface Sci. 498, 143807 (2019)

    Article  CAS  Google Scholar 

  6. M. Ates, S. Caliskan, E. Ozten, Fullerenes Nanotubes Carbon Nanostruct. 26, 360 (2018)

    Article  CAS  Google Scholar 

  7. J. Kavil, P.M. Anjana, P. Periyat, R.B. Rakhi, Sustain. Energy Fuels 2, 2244 (2018)

    Article  CAS  Google Scholar 

  8. K. Liang, X. Tang, W. Hu, J. Mater. Chem. 22, 11062 (2012)

    Article  CAS  Google Scholar 

  9. L. Demarconnay, E. Raymundo-Piñero, F. Béguin, J. Power Sources 196, 580 (2011)

    Article  CAS  Google Scholar 

  10. X. Du, C. Wang, M. Chen, Y. Jiao, J. Wang, J. Phys. Chem. C 113, 2643 (2009)

    Article  CAS  Google Scholar 

  11. X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, J. Mater. Chem. 21, 9319 (2011)

    Article  CAS  Google Scholar 

  12. S. Polat, Türk Doğa ve Fen Dergisi 10, 199 (2021)

    Article  Google Scholar 

  13. S. Polat and D. Faris, Ceramics International 48, 24609 (2022).

  14. F.F. Alharbi, S. Aman, N. Ahmad, S.R. Ejaz, S. Manzoor, R.Y. Khosa, M.U. Nisa, M.A. Iqbal, S. Abbas, M. Awais, J Mater Sci: Mater Electron 33, 7256 (2022)

    CAS  Google Scholar 

  15. N. Sivakumar, S.R.P. Gnanakan, K. Karthikeyan, S. Amaresh, W.S. Yoon, G.J. Park, Y.S. Lee, J. Alloy. Compd. 509, 7038 (2011)

    Article  CAS  Google Scholar 

  16. S.J. Uke, S.P. Mardikar, D.R. Bambole, Y. Kumar, G.N. Chaudhari, Mater. Sci. Energy Technol. 3, 446 (2020)

    CAS  Google Scholar 

  17. Z.K. Heiba, M.A. Deyab, A.M. El-naggar, M.B. Mohamed, Ceram. Int. 47, 7475 (2021)

    Article  CAS  Google Scholar 

  18. M. Israr, J. Iqbal, A. Arshad, P. Gómez-Romero, R. Benages, Solid State Sci. 110, 106363 (2020)

    Article  CAS  Google Scholar 

  19. G. Nabi, K.N. Riaz, M. Nazir, W. Raza, M.B. Tahir, M. Rafique, N. Malik, A. Siddiqa, S.S. Ali Gillani, M. Rizwan, M. Shakil, M. Tanveer, Ceram. Int. 46, 27601 (2020)

    Article  CAS  Google Scholar 

  20. Y. Wu, T. Wang, Y. Zhang, S. Xin, X. He, D. Zhang, J. Shui, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  21. K. Thiagarajan, T. Bavani, P. Arunachalam, S.J. Lee, J. Theerthagiri, J. Madhavan, B.G. Pollet, M.Y. Choi, Nanomaterials 10, 392 (2020)

    Article  CAS  Google Scholar 

  22. J. Shi, B. Zheng, L. Mao, C. Cheng, Y. Hu, H. Wang, G. Li, D. Jing, X. Liang, Int. J. Hydrogen Energy 46, 2927 (2021)

    Article  CAS  Google Scholar 

  23. D. Niu, L. Wu, X. Zhu, D. Xu, X. Feng, M. Tian, Y. Song, J. Phys. Chem. C 124, 15028 (2020)

    Article  CAS  Google Scholar 

  24. Y. Guo, Y. Chen, X. Hu, Y. Yao, Z. Li, Colloids Surf., A 631, 127676 (2021)

    Article  CAS  Google Scholar 

  25. A. Kumar, P. Kumar, C. Joshi, M. Manchanda, R. Boukherroub, S.L. Jain, Nanomaterials 6, 59 (2016)

    Article  Google Scholar 

  26. S.K. Durrani, S. Naz, M. Mehmood, M. Nadeem, M. Siddique, J. Saudi Chem. Soc. 21, 899 (2017)

    Article  CAS  Google Scholar 

  27. A. Ansari, A. Ali, M. Asif, Shamsuzzaman, New J Chem 42, 184 (2018)

    Article  CAS  Google Scholar 

  28. K.-S. Loh, Y.H. Lee, A. Musa, A.A. Salmah, I. Zamri, Sensors 8, 5775 (2008)

    Article  CAS  Google Scholar 

  29. Z.K. Heiba, M.M.S. Sanad, M.B. Mohamed, Solid State Ionics 341, 115042 (2019)

    Article  CAS  Google Scholar 

  30. J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391, 72 (2017)

    Article  CAS  Google Scholar 

  31. K. Qi, A. Zada, Y. Yang, Q. Chen, A. Khataee, Res Chem Intermed 46, 5281 (2020)

    Article  CAS  Google Scholar 

  32. X. Guo, J. Duan, C. Li, Z. Zhang, W. Wang, J Mater Sci 55, 2018 (2020)

    Article  CAS  Google Scholar 

  33. S. Polat, D. Faris, Ceram. Int. 48, 24609 (2022)

    Article  Google Scholar 

  34. S. Sun, D. Rao, T. Zhai, Q. Liu, H. Huang, B. Liu, H. Zhang, L. Xue, H. Xia, Adv. Mater. 32, 2005344 (2020)

    Article  CAS  Google Scholar 

  35. A. Mishra, N. Shetti, S. Basu, K. Reddy, T. Aminabhavi, ChemElectroChem 6, 5771 (2019)

    Article  CAS  Google Scholar 

  36. B. Rani, A.K. Nayak, N.K. Sahu, Diam. Relat. Mater. 120, 108671 (2021)

    Article  CAS  Google Scholar 

  37. C.V.M. Gopi, R. Vinodh, S. Sambasivam, I.M. Obaidat, S. Singh, H.-J. Kim, Chem. Eng. J. 381, 122640 (2020)

    Article  CAS  Google Scholar 

  38. B.Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. David) Lou, Adv. Mater. 29, 1605902 (2017)

    Article  Google Scholar 

  39. L. Li, G. Jiang, J. Ma, Mater. Res. Bull. 104, 53 (2018)

    Article  CAS  Google Scholar 

  40. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  CAS  Google Scholar 

  41. H. Tong, S. Yue, L. Lu, F. Jin, Q. Han, X. Zhang, J. Liu, Nanoscale 9, 16826 (2017)

    Article  CAS  Google Scholar 

  42. H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, J. Mater. Chem. 21, 5430 (2011)

    Article  CAS  Google Scholar 

  43. X. Li, P. Dong, C. Liu, X. Yu, J. Zhao, S. Sun, J. Liu, Y. Zhang, Ceram. Int. 44, 18471 (2018)

    Article  CAS  Google Scholar 

  44. H.-L. Zhu, Y.-Q. Zheng, Electrochim. Acta 265, 372 (2018)

    Article  CAS  Google Scholar 

  45. J. Zhang, J. Ding, C. Li, B. Li, D. Li, Z. Liu, Q. Cai, J. Zhang, Y. Liu, ACS Sustain. Chem. Eng. 5, 4982 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported within the scope of the project numbered “KBÜBAP-21-ABP-047” supported by the Scientific Research Projects Coordination Unit of Karabuk University. In addition, Karabuk University MARGEM laboratories were used. We thank both departments for supporting the study.

Author information

Authors and Affiliations

Authors

Contributions

SP contributed by identifying the subject of this study, procuring the raw materials, writing the article, drawing the graphs, and teaching MM (student) the fabrication and electrochemical tests. MM contributed to the fabrication and characterization as well as the electrochemical tests.

Corresponding author

Correspondence to Safa Polat.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, S., Mashrah, M. Synthesis and electrochemical performance of MgFe2O4 with g-C3N4 on Ni-foam as composite anode material in supercapacitors. J Mater Sci: Mater Electron 33, 23427–23436 (2022). https://doi.org/10.1007/s10854-022-09104-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09104-w

Navigation