Skip to main content

Advertisement

Log in

Electromechanical properties and cycling stability of low-temperature co-fired BNT–ST multilayer piezoactuators

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-temperature co-fired Bi0.5Na0.5TiO3–SrTiO3 (BNT–ST)/Ag–Pd lead-free multilayer piezoactuators (MLAs) with a large strain and excellent cycling stability were fabricated by tape casting for practical applications. Adding CuO decreased the sintering temperature of (1 − x)BNT–xST + 0.05 wt% MnO2 (BNST100x) ceramics from 1190 °C to 960 °C. A BNST25.5 ceramic with 1.2 wt% CuO outputs a large normalized strain (950 pm/V) under an ultra-low driving field (2 kV/mm). Through optimizing the material composition and ceramic layer thickness, a normalized strain of 760 pm/V at 2.5 kV/mm is realized in a BNST24 with 1.2 wt% CuO MLA with a 63 μm single-layer thickness. Fairly good cycling stability is achieved with only ∼5% reduction after 107 cycles at 4 kV/mm. At the same time, these MLAs could still deliver over 85% strain at 80 °C. A MLA prototype with commercial size outputs a total strain of 0.112% and a blocking stress of 35.4 MPa at 2.5 kV/mm, demonstrating a better performance than that of traditional commercial lead zirconate titanate (PZT) actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. L. Gao, H. Guo, S. Zhang, C.A. Randall, Base metal co-fired multilayer piezoelectrics. Actuators 5, 8 (2016)

    Article  Google Scholar 

  2. K. Uchino, Multilayer technologies for piezo-ceramic materials, advanced piezoelectric materials (Woodhead Publishing, Sawston, 2010)

    Book  Google Scholar 

  3. P. Fan, K. Liu, W. Ma, H. Tan, Q. Zhang, L. Zhang, C. Zhou, D. Salamon, S.T. Zhang, Y. Zhang, B. Nan, H. Zhang, Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J. Materiomics 7, 508–544 (2021)

    Article  Google Scholar 

  4. A.P. Deng, J. Wu, Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state. J. Eur. Ceram. Soc. 41, 5147–5154 (2021)

    Article  CAS  Google Scholar 

  5. H. Wang, Q. Li, Y. Jia, A.K. Yadav, B. Yan, M. Li, Q. Quan, W. Wang, H. Fan, Large electro-strain with excellent fatigue resistance of lead-free (Bi0.5Na0.5)0.94Ba0.06Ti1–x(Y0.5Nb0.5)xO3 perovskite ceramics. Ceram. Int. 47, 17092–17098 (2021)

    Article  CAS  Google Scholar 

  6. J. Zhang, Z. Liu, T. Zhang, Y. Liu, Y. Lyu, High strain response and low hysteresis in BaZrO3-modified KNN-based lead-free relaxor ceramics. J. Mater. Sci. : Mater. Electron. 32, 16715–16725 (2021)

    CAS  Google Scholar 

  7. M.H. Zhang, Q. Zhang, T.T. Yu, G. Li, H.C. Thong, L.Y. Peng, L. Liu, J. Ma, Y. Shen, Z. Shen, J. Daniels, L. Gu, B. Han, L.Q. Chen, J.F. Li, F. Li, K. Wang, Enhanced electric-field-induced strains in (K, Na)NbO3 piezoelectrics from heterogeneous structures. Mater. Today 46, 44–53 (2021)

    Article  CAS  Google Scholar 

  8. Z. Yang, J. Fu, Y. Xu, R. Zuo, Field-insensitive giant dynamic piezoelectric response and its structural origin in (Ba,Ca)(Ti,Zr)O3 tetragonal-orthorhombic phase-boundary ceramics. J. Eur. Ceram. Soc. 41, 6441–6448 (2021)

    Article  CAS  Google Scholar 

  9. H. Zhao, X. Yang, D. Pang, X. Long, Enhanced energy storage efficiency by modulating field-induced strain in BaTiO3-Bi(Ni2/3Ta1/3)O3 lead-free ceramics. Ceram. Int. 47, 22734–22740 (2021)

    Article  CAS  Google Scholar 

  10. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective. J. Electroceram. 29, 71–93 (2012)

    Article  CAS  Google Scholar 

  11. X. Lv, X.X. Zhang, J. Wu, Nano-domains in lead-free piezoceramics: a review. J. Mater. Chem. A 8, 10026–10073 (2020)

    Article  CAS  Google Scholar 

  12. J. Wu, Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 127, 190901 (2020)

    Article  CAS  Google Scholar 

  13. X.Y. Tong, Z.Z. Du, Y.T. Yang, M.W. Song, J.J. Zhou, H.B. Zhang, C.L. Guan, H. Liu, J.Z. Fang, Low driving field-induced large strain in MnO2-modified 0.76Bi1/2Na1/2TiO3-0.24SrTiO3 lead-free piezoceramics. J. Alloys Compd. 857, 158237 (2021)

    Article  CAS  Google Scholar 

  14. H.L. Li, Q. Liu, J.J. Zhou, K. Wang, J.F. Li, H. Liu, J.Z. Fang, Grain size dependent electrostrain in Bi1/2Na1/2TiO3-SrTiO3 incipient piezoceramics. J. Eur. Ceram. Soc. 36, 2849–2853 (2016)

    Article  CAS  Google Scholar 

  15. X.Y. Tong, Z.Z. Du, Y.T. Yang, S.H. Chen, M.W. Song, J.J. Zhou, C.L. Guan, H. Liu, Effect of stress on the phase transition and optimizing electric-induced strain behavior of Bi0.5Na0.5TiO3-SrTiO3 lead-free co-fired multilayer piezoactuators. J. Eur. Ceram. Soc. 42, 2157–2169 (2022)

    Article  CAS  Google Scholar 

  16. A. Matias, Strain mechanisms in lead-free ferroelectrics for actuators (Springer International Publishing, New York, 2016)

    Google Scholar 

  17. M. Saleem, I.-S. Kim, M.-S. Kim, B.-K. Koo, S.-J. Jeong, Large signal electrical property of CuO-doped of a Bi0.5Na0.5TiO3-SrTiO3, J. Electroceramics 40, 88–98 (2018)

    Article  CAS  Google Scholar 

  18. C.H. Pei, M.L. Chen, K.H. Chen, C.M. Cheng, Performance improvement of LiF/ZnO codoped lead-free piezoelectric ceramics. Sens. Mater 29, 411–418 (2017)

    CAS  Google Scholar 

  19. P. Fan, Y. Zhang, S.T. Zhang, B. Xie, Y. Zhu, M.A. Marwat, W. Ma, K. Liu, L. Shu, H. Zhang, Low-temperature sintered (Na1/2Bi1/2)TiO3-based incipient piezoceramics for co-fired multilayer actuator application. J. Materiomics 5, 480–488 (2019)

    Article  Google Scholar 

  20. K. Liu, Y. Zhang, M.A. Marwat, G. Wang, D. Wang, W. Ma, T. Wei, M. li, J. Xu, H. Yang, S. Kongparakul, C. Samart, J. Zang, P. Fan, H. Zhang, Large electrostrain in low-temperature sintered NBT-BT-0.025FN incipient piezoceramics. J. Am. Ceram. Soc. 103, 3739–3747 (2020)

    Article  CAS  Google Scholar 

  21. X.Y. Tong, J.J. Zhou, K. Wang, H. Liu, J.Z. Fang, Low-temperature sintered Bi0.5Na0.5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J. Eur. Ceram. Soc. 37, 4617–4623 (2017)

    Article  CAS  Google Scholar 

  22. C.W. Ahn, H.S. Kim, W.S. Woo, S.S. Won, H.J. Seog, S.A. Chae, B.C. Park, K.B. Jang, Y.P. Ok, H.H. Chong, IllW. Kim, Low-Temperature Sintering of Bi0.5(Na,K)0.5TiO3 for Multilayer Ceramic Actuators. J. Am. Ceram. Soc. 98, 1877–1883 (2015)

    Article  CAS  Google Scholar 

  23. M. Ehmke, J. Glaum, W. Jo, T. Granzow, J. Rödel, Stabilization of the fatigue-resistant phase by CuO addition in (Bi1/2Na1/2)TiO3–BaTiO3. J. Am. Ceram. Soc. 94, 2473–2478 (2011)

    Article  CAS  Google Scholar 

  24. W. Jo, J.B. Ollagnier, J.L. Park, E.M. Anton, O.J. Kwon, C. Park, H.H. Seo, J.S. Lee, E. Erdem, R.A. Eichel, J. Rödel, CuO as a sintering additive for (Bi1/2Na1/2)TiO3-BaTiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics. J. Eur. Ceram. Soc. 31, 2107–2117 (2011)

    Article  CAS  Google Scholar 

  25. X. Zhou, G. Xue, H. Luo, C.R. Bowen, D. Zhang, Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog Mater. Sci. 122, 100836 (2021)

    Article  CAS  Google Scholar 

  26. J. Hao, W. Li, J. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R Rep. 135, 1–57 (2019)

    Article  Google Scholar 

  27. H. Wang, S.M. Lee, H.T. Lin, R. Stafford, Performance of PZT stacks under high-field electric cycling at various temperatures in heavy-duty diesel engine fuel injectors (SPIE, Bellingham, 2016)

    Google Scholar 

  28. H. Zhang, W. Ma, B. Xie, L. Zhang, S. Dong, P. Fan, K. Wang, J. Koruza, J. Rödel, (Na1/2Bi1/2)TiO3-based lead-free co-fired multilayer actuators with large strain and high fatigue resistance. J. Am. Ceram. Soc. 102, 6147–6155 (2019)

    Article  CAS  Google Scholar 

  29. E. Sapper, A. Gassmann, L. Gjødvad, W. Jo, T. Granzow, J. Rödel, Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics. J. Eur. Ceram. Soc. 34, 653–661 (2014)

    Article  CAS  Google Scholar 

  30. H. Wang, A.A. Wereszczak, H.T. Lin, Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload. J. Appl. Phys. 105, 014112 (2009)

    Article  CAS  Google Scholar 

  31. J. Glaum, T. Granzow, L.A. Schmitt, H.J. Kleebe, J. Rödel, Temperature and driving field dependence of fatigue processes in PZT bulk ceramics. Acta Mater. 59, 6083–6092 (2011)

    Article  CAS  Google Scholar 

  32. W. Yang, Z. Suo, Cracking in ceramic actuators caused by electrostriction. J. Mech. Phys. Solids 42, 649–663 (1994)

    Article  CAS  Google Scholar 

  33. Z. Luo, J. Glaum, T. Granzow, W. Jo, R. Dittmer, M. Hoffman, J. Rödel, Bipolar and unipolar fatigue of ferroelectric BNT-based lead‐free piezoceramics. J. Am. Ceram. Soc. 94, 529–535 (2011)

    Article  CAS  Google Scholar 

  34. D. Lupascu, J. Rödel, Fatigue in bulk lead zirconate titanate actuator materials. Adv. Eng. Mater. 7, 882–898 (2005)

    Article  CAS  Google Scholar 

  35. Z. Du, C. Zhao, H.C. Thong, Z. Zhou, J. Zhou, K. Wang, C. Guan, H. Liu, J. Fang, Effect of MnCO3 on the electrical properties of PZT-based piezoceramics sintered at low temperature. J. Alloys Compd. 801, 27–32 (2019)

    Article  CAS  Google Scholar 

  36. Q. Zhang, S. Jiang, T. Yang, Pyroelectric, dielectric, and piezoelectric properties of MnO2-doped (Na0.82K0.18)0.5Bi0.5TiO3 lead-free ceramics. J. Electroceram. 29, 8–11 (2012)

    Article  CAS  Google Scholar 

  37. M. Zhu, L. Liu, Y. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO2-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)

    Article  CAS  Google Scholar 

  38. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater. Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  39. Z.H. Zhao, R.F. Ge, Y. Dai, Large electro-strain signal of the BNT–BT–KNN lead-free piezoelectric ceramics with CuO doping. J. Adv. Dielect 09, 1950022 (2019)

    Article  CAS  Google Scholar 

  40. Y. Zhu, Y. Zhang, B. Xie, P. Fan, M.A. Marwat, W. Ma, C. Wang, B. Yang, J. Xiao, H. Zhang, Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 lead-free piezoceramics. Ceram. Int. 44, 7851–7857 (2018)

    Article  CAS  Google Scholar 

  41. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007)

    Article  CAS  Google Scholar 

  42. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008)

    Article  CAS  Google Scholar 

  43. Y.H. Hong, H.S. Han, G.H. Jeong, Y.S. Park, T.H. Dinh, C.W. Ahn, J.S. Lee, High electromechanical strain properties by the existence of nonergodicity in LiNbO3-modified Bi1/2Na1/2TiO3-SrTiO3 relaxor ceramics, Ceram. Int. 44, 21138–21144 (2018)

    CAS  Google Scholar 

  44. J.S. Lee, M.S. Choi, H.S. Han, Y.M. Kong, S. Kim, I.W. Kim, M.S. Kim, S.J. Jeong, Effects of internal electrode composition on the reliability of low-firing PMN–PZT multilayer ceramic actuators. Sens. Actuator A Phys. 154, 97–102 (2009)

    Article  CAS  Google Scholar 

  45. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  46. V.Q. Nguyen, J.K. Kang, H.S. Han, H.Y. Lee, S.J. Jeong, C.W. Ahn, I.W. Kim, J.S. Lee, Bi-based lead-free ceramic multilayer actuators using AgPd-(Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 composite inner electrodes, Sens. Actuator A Phys. 200, 107–113 (2013)

    Article  CAS  Google Scholar 

  47. P. Kaufmann, S. Röhrig, P. Supancic, M. Deluca, Influence of ferroelectric domain texture on the performance of multilayer piezoelectric actuators. J. Eur. Ceram. Soc. 37, 2039–2046 (2017)

    Article  CAS  Google Scholar 

  48. https://www.physikinstrumente.comenproductspiezoelectric-transducers-actuatorsp-882-p-888-picma-stack-multilayer-piezo-actuators-100810#

  49. M. Otonicar, J. Park, M. Logar, G. Esteves, J.L. Jones, B. Jancar, External-field-induced crystal structure and domain texture in (1-x)Na0.5Bi0.5TiO3-xK0.5Bi0.5TiO3 piezoceramics. Acta Mater. 127, 319–331 (2017)

    Article  CAS  Google Scholar 

  50. K. Reichmann, D. Schutz, Load characteristics of lead-free ceramic multilayer actuators based on Bismuth–Sodium–Titanate. Int. J. Appl. Ceram. Technol. 11, 431–435 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Innovation Promotion Association CAS (2021381).

Funding

Funding was provided by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021381).

Author information

Authors and Affiliations

Authors

Contributions

XYT was responsible for conceptualization, investigation, and writing of the original draft. YTY and ZZD were responsible for writing, reviewing, & editing of the manuscript. MWS was responsible for test and data curation. JJZ was responsible for conceptualization, funding acquisition, and writing, reviewing, & editing of the manuscript. HL and CLG were responsible for funding acquisition and supervision.

Corresponding authors

Correspondence to Xing-Ye Tong or Jia-Jun Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This material is the authors’ original work, which has not been previously published elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, XY., Yang, YT., Du, ZZ. et al. Electromechanical properties and cycling stability of low-temperature co-fired BNT–ST multilayer piezoactuators. J Mater Sci: Mater Electron 33, 21482–21496 (2022). https://doi.org/10.1007/s10854-022-08939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08939-7

Navigation