Skip to main content
Log in

Large strain with low hysteresis in Sn-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the sake of excellent strain performance for actuator application, Sn-modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 (BNT–BKT) ceramics were designed and prepared by solid-state reaction method. The crystal structures and microstructures of Bi0.5(Na0.75K0.25)0.5(Ti1−xSnx)O3 (abbreviated as BNKT–xSn, x = 0, 0.02, 0.05, 0.08) were systematically investigated together with their strain performance. It is found that all the compositions possessed a single perovskite structure phase by X-ray diffraction patterns. With increasing Sn content, the ferroelectric phase with mainly tetragonal structure gradually transformed into the ergodic relaxor phase in pseudocubic structure with nanodomains further confirmed by high-resolution transmission electron microscope images. Both the PE and IE loops confirmed this structural change and the coexistence of ferroelectric phase and ergodic relaxor phase at x = 0.02, where a large strain of 0.37% was achieved with low hysteresis (21.8%). By analyzing the bipolar and unipolar strain curves and the origin of strain, we believe that the large strain is contributed to the phase transition from ferroelectric phase into ergodic relaxor phase, and the low hysteresis is beneficial from the existence of ergodic relaxor phase, which should pave a way for future developing high-performance actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J Electroceram 29(1):71–93

    CAS  Google Scholar 

  2. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681

    Google Scholar 

  3. Fan PY, Zhang YY, Xie B, Zhu YW, Ma WG, Wang C (2018) Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2(Na0.82K0.12)1/2TiO3 lead-free piezoceramics, Ceram Int 44(3):3211–3217

    CAS  Google Scholar 

  4. Wu L, Shen B (2017) Giant electromechanical strain response in lead-free SrTiO3-doped (Bi0.5Na0.5TiO3–BaTiO3)–LiNbO3 piezoelectric ceramics. J Am Ceram Soc 100(10):4670–4679

    CAS  Google Scholar 

  5. Zheng T, Wu J, Xiao D, Zhu J (2018) Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater Sci 98:552–624

    CAS  Google Scholar 

  6. Yin J, Wang Y, Zhang Y, Wu B, Wu J (2018) Thermal depolarization regulation by oxides selection in lead-free BNT/oxides piezoelectric composites. Acta Mater 158:269–277

    CAS  Google Scholar 

  7. Yin J, Zhang Y, Lv X, Wu J (2018) Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J Mater Chem A 6:9823–9832

    CAS  Google Scholar 

  8. Yin J, Zhao C, Zhang Y, Wu J (2018) Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics. Acta Mater 147:70–77

    CAS  Google Scholar 

  9. Li L, Zhang J, Wang R-X, Zheng M, Hou Y, Zhang H, Zhang S-T, Zhu M (2019) Thermally-stable large strain in Bi(Mn0.5Ti0.5)O3 modified 0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3 ceramics. J Eur Ceram Soc 39(5):1827–1836

    CAS  Google Scholar 

  10. Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28(3):574–578

    CAS  Google Scholar 

  11. Zhao NS, Fan HQ, Ma JW (2018) Large strain of temperature insensitive in (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xSr0.7La0.2TiO3 lead-free ceramics, Ceram Int l44(10):11331-11339

  12. Morozov MI, Damjanovic D (2010) Charge migration in Pb(Zr, Ti)O3 ceramics and its relation to ageing, hardening, and softening. J Appl Phys 107(3):034106

    Google Scholar 

  13. Hao JG, Xu ZJ, Chu RQ, Li W, Du J (2015) Large electric-field-induced strain in SrZrO3 modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free electromechanical ceramics with fatigue-resistant behavior. J Alloys Compd 647:857–865

    CAS  Google Scholar 

  14. Jo W, Daniels JE, Jones JL, Tan XL, Thomas PA, Damjanovic D, Rödel J (2011) Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J Appl Phys 109(1):014110

    Google Scholar 

  15. Pan H, Zhang J, Jia X, Xing H, He J, Wang J, Wen F (2018) Large electrostrictive effect and high optical temperature sensing in Bi0.5Na0.5TiO3–BaTiO3–(Sr0.7Bi0.18Er0.02)TiO3 luminescent ferroelectrics. Ceram Int 44(5):5785–5789

    CAS  Google Scholar 

  16. Bai W, Wang L, Zheng P, Wen F, Yuan Y, Ding M, Chen D, Zhai J, Ji Z (2018) Large electrostrictive effect in lead-free (Bi0.5Na0.5)TiO3-based composite piezoceramics. Ceram Int 44(7):8628–8634

    CAS  Google Scholar 

  17. Han HS, Jo W, Kang JK, Ahn CW, Kim IW, Ahn KK, Lee JS (2013) ) Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics. J Appl Phys 113(15):154102

    Google Scholar 

  18. Lee JS, Pham KN, Han HS, Lee HB, Vu DNT (2012) Strain enhancement of lead-free Bi0.5(Na0.82K0.18)0.5TiO3 ceramics by Sn doping. J Korean Phys Soc 60(2):212–215

    CAS  Google Scholar 

  19. Yuan R, Liu Z, Balachandran PV, Xue D, Zhou Y, Ding X, Sun J, Xue D (2018) Accelerated discovery of large electrostrains in BaTiO3-Based piezoelectrics using active learning. Adv Mater 30(7):1702884

    Google Scholar 

  20. Hiruma Y, Nagata H, Takenaka T (2007) Phase-transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free ferroelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 54(12):2493–2499

    Google Scholar 

  21. Ullah A, Ahn CW, Hussain A, Lee SY, Kim IW (2011) ) Phase transition, electrical properties, and temperature-insensitive large strain in BiAlO3-Modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoelectric ceramics. J Am Ceram Soc 94(11):3915–3921

    CAS  Google Scholar 

  22. Jones GO, Kreisel J (2002) A structural study of the (Na1−xKx)0.5Bi0.5TiO3 perovskite series as a function of substitution (x) and temperature. Powder Diffr 17(04):301–319

    CAS  Google Scholar 

  23. Tai CW, Choy SH (2008) Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(Bi1/2Li1/2)TiO3–BaTiO3 ceramics at different temperatures. J Am Ceram Soc 91(10):3335–3341

    CAS  Google Scholar 

  24. Chandrasekhar M, Jayarao G, Khatua DK, Kumar P (2019) Effect of NaNbO3 addition on structure, dielectric and energy storage properties of lead free piezoelectric Bi0.5Na0.5TiO3–K0.5Na0.5NbO3 ceramics. Ceram Int 45(2):1969–1976

    CAS  Google Scholar 

  25. Qian H, Yu ZL, Mao MM, Liu YF, Lyu YN (2017) Nanoscale origins of small hysteresis and remnant strain in Bi0.5Na0.5TiO3-based lead-free ceramics. J Eur Ceram Soc 37(11):3483–3491

    CAS  Google Scholar 

  26. Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95(1):1–26

    CAS  Google Scholar 

  27. Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys: Condens Matter 15(9):R367–411

    CAS  Google Scholar 

  28. Sapper E, Schaab S, Jo W, Granzow T, Rödel J (2012) Influence of electric fields on the depolarization temperature of Mn doped (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3. J Appl Phys 111(1):014105

    Google Scholar 

  29. Hiruma Y, Nagata H, Takenaka T (2009) Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys 105(8):084112

    Google Scholar 

  30. Zhang S-T, Kounga AB, Aulbach E, Jo W, Granzow T, Ehrenberg H, Rodel J (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties. J Appl Phys 103:034108

    Google Scholar 

  31. Yan H, Inam F, Viola G, Ning H, Zhang H, Jiang Q, Zeng T, Gao Z, Reece MJ (2011) The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J Adv Dielectr 1(1):107–118

    CAS  Google Scholar 

  32. Xie H, Yang L, Pang SJ, Yuan CL, Chen GH, Wang H, Zhou CR, Xu JW (2019) The evolution of phase structure, dielectric, strain, and energy storage density of complex-ions (Sr1/3Nb2/3)4+ doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 ceramics. J Phys Chem Solids 126:287–293

    CAS  Google Scholar 

  33. Li L, Zhu M, Wei Q, Zheng M, Hou Y, Hao J (2018) Ferroelectric P4mm to relaxor P4bm transition and temperature-insensitive large strains in Bi(Mg0.5Ti0.5)O3-modified tetragonal 0.875Bi0.5Na0.5TiO3–0.125BaTiO3 lead-free ferroelectric ceramics. J Eur Ceram Soc 38(4):1381–1388

    CAS  Google Scholar 

  34. Zhao W, Zuo R, Zheng D, Li L (2014) Dielectric relaxor evolution and frequency-insensitive giant strains in (Bi0.5Na0.5)TiO3-modified Bi(Mg0.5Ti0.5)O3–PbTiO3 ferroelectric ceramics. J Am Ceram Soc 97(6):1855–1860

    CAS  Google Scholar 

  35. Li T, Lou X, Ke X, Cheng S, Mi S, Wang X, Shi J, Liu X, Dong G, Fan H, Wang Y, Tan X (2017) Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater 128:337–344

    CAS  Google Scholar 

  36. Jo W, Granzow T, Aulbach E, Rodel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics. J Appl Phys 105:094102

    Google Scholar 

  37. Bai WF, Bian YL, Hao JG, Shen B, Zhai JW (2013) The composition and temperature-dependent structure evolution and large strain response in (1−x)(Bi0.5Na0.5)TiO3–xBa(Al0.5Ta0.5)O3 ceramics. J Am Ceram Soc 96(1):246–252

    CAS  Google Scholar 

  38. Bai WF, Li P, Li LY, Zhang JJ, Shen B, Zhai JW (2015) Structure evolution and large strain response in BNT–BT lead-free piezoceramics modified with Bi(Ni0.5Ti0.5)O3. J Alloys Compd 649:772–781

    CAS  Google Scholar 

  39. Du J, An F, Xu ZJ, Cheng RF, Chu RQ, Yi XJ, Hao JG, Li W (2016) Effects of BiFe0.5Ta0.5O3 addition on electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Ceram Int 42(1):1943–1949

    CAS  Google Scholar 

  40. Hussain A, Ahn CW, Lee JS, Ullah A, Kim IW (2010) Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics. Sens Actuators A 158(1):84–89

    CAS  Google Scholar 

  41. Rout SK, Chauhan V, Kushvaha DK, Sinha E, Hussain A, Tiwari B (2018) Impact of multiple phases on ferroelectric and piezoelectric performances of BNKT–BZT ceramic. J Mater Sci-Mater Electron 29(22):19524–19531

    CAS  Google Scholar 

  42. Dinh TH, Bafandeh MR, Kang J-K, Hong C-H, Jo W, Lee J-S (2015) Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82K0.18)1/2TiO3 ceramics. Ceram Int 41(S1):S458–S463

    CAS  Google Scholar 

  43. Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li JF, Rödel J (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23(33):4079–4086

    CAS  Google Scholar 

  44. Wu B, Ma J, Wu W, Chen M, Wu H (2018) Balanced development in piezoelectricity and curie temperature of the alkaline niobate-based ceramics. J Mater Sci-Mater Electron 29(8):6844–6852

    CAS  Google Scholar 

  45. Zhu Y, Zhang Y, Xie B, Fan P, Marwat MA, Ma W, Wang C, Yang B, Xiao J, Zhang H (2018) Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3–0.24SrTiO3 lead-free piezoceramics. Ceram Int 44(7):7851–7857

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51602147) and Natural Science Foundation of Jiangsu Higher Education Institutions of China (16KJB430017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minmin Mao, Yunfei Liu or Yinong Lyu.

Ethics declarations

Conflict of interest

The authors and the institutes where the work has been carried out declare that there are no conflicts of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, H., Yu, L., Qian, H. et al. Large strain with low hysteresis in Sn-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoceramics. J Mater Sci 55, 1388–1398 (2020). https://doi.org/10.1007/s10853-019-04154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04154-8

Navigation