Skip to main content
Log in

Electron transport in dye-sanitized solar cell with tin-doped titanium dioxide as photoanode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and tin-incorporated TiO2 (Sn-TiO2) nanoparticles were prepared utilizing photolysis method. Field emission-scanning electron microscope (FESEM) and transmission electron microscopy (TEM) reveal the formation of fusiform and spherical agglomeration nanoparticles with mesoporous structure and size that is equal to 20 nm approximately. The preparation of 5%Sn:TiO2 is confirmed by energy dispersive X-ray (EDX), and the empirical formal is Sn0.05TiO4. X-ray diffraction (XRD) studies confirm that they have a 4 nm crystallite size and crystallized as an anatase phase of TiO2. X-ray photoelectron spectroscopy (XPS) revealed that 1% Sn4+ was successfully incorporated with TiO2 and that Ti3+ is presented as an electron trap. Raman spectrum shows a higher shift of TiO2 peaks with in Sn:TiO2. The band gap decreases with increasing Sn4+ incorporating ratio and reaching a minimum value of 2.62 eV corresponding to 5% Sn:TiO2, as well as the adsorption spectrum of Sn4+-incorporated TiO2 has an excellent transmittance with increasing Sn4+ incorporating from 5% weight ratio until reaching 85%. The results obtained that the optimum conditions for working Sn:TiO2 as a DSSCs are 5%Sn incorporation ratio and pH = 3. EIS measurements were used to quantify the kinetics of interfacial charge transfer, such as chemical capacitance, electron recombination lifespan, charge transfer resistance, charge collection efficiency, and charge transfer resistance. Enhanced power conversion is equal to 12.32% for %5Sn:TiO2/based N3 dye/Ag at pH = 3 by using solar simulator (100 mW/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: Present efficiencies and future challenges. Science. 352(6283), 4424 (2016). https://doi.org/10.1126/science.aad4424

    Article  CAS  Google Scholar 

  2. A.M. Ammar, G.M. Abdel-Hafez, H.S. Mohamed, A.S. Hassanien, M.M. Yousef, A.S. Khalil, Dye-sensitized solar cells (DSSCs) based on extracted natural dyes. J. Nanomater. (2019). https://doi.org/10.1155/2019/1867271

    Article  Google Scholar 

  3. N.T.M. Rosana, D.J. Amarnath, P.S. Kumar, K.L.V. Joseph, Potential of plant-based photosensitizers in dye-sensitized solar cell applications. Environ. Prog. Sustain. Energy (2019). https://doi.org/10.1002/ep.13351

    Article  Google Scholar 

  4. Ismail Cihan Kaya, Seckin Akin, Hasan Akyildiz, Savas Sonmezoglu, Highly efficient tandem photoelectrochemical solar cells using coumarin6 dye-sensitized CuCrO2 delafossite oxide as photocathode. Solar Energy. 169, 196–205 (2018)

    Article  CAS  Google Scholar 

  5. E. Cuce, C.-H. Young, S.B. Riffat, Thermal performance investigation of heat insulation solar glass: A comparative experimental study. Energy Build. 86, 595–600 (2015)

    Article  Google Scholar 

  6. E. Cuce, S.B. Riffat, C.-H. Young, Thermal insulation, power generation, lighting and energy saving performance of heat insulation solar glass as a curtain wall application in Taiwan: A comparative experimental study. Energ. Convers. Manag. 96, 31–38 (2015)

    Article  Google Scholar 

  7. T. Ozturk, B. Gulveren, M. Gulen, E. Akman, S. Sonmezoglu, An insight into titania nanopowders modifying with manganese ions: A promising route for highly efficient and stable photoelectrochemical solar cells. Solar Energy. 157, 47–57 (2017)

    Article  CAS  Google Scholar 

  8. X. Xiao, X. Zhang, H. Su, S. Chen, Z. He, C. Zhao, S. Yang, A visible-NIR responsive dye-sensitized solar cell based on diatom frustules and cosensitization of photopigments from Diatom and purple bacteria. J. Chem. (2020). https://doi.org/10.1155/2020/1710989

    Article  Google Scholar 

  9. Y. Huang, H. Wu, Q. Yu, J. Wang, C. Yu, J. Wang, S. Gao, S. Jiao, X. Zhang, P. Wang, Single-layer TiO2 film composed of mesoporous spheres for high-efficiency and stable dye-sensitized solar cells. ACS Sustain. Chem. Eng. 6, 3411–3418 (2018)

    Article  CAS  Google Scholar 

  10. D. Zhou, Q. Yu, N. Cai, Y. Bai, Y. Wang, P. Wang, Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline) cobalt (II/III) redox shuttle. Energy Environ. Sci. 4, 2030–2034 (2011)

    Article  CAS  Google Scholar 

  11. B. He, X. Meng, Q. Tang, Low-cost counter electrodes from CoPt alloys for efficient dyesensitized solar cells. ACS Appl. Mater. Interfaces 6, 4812–4818 (2014)

    Article  CAS  Google Scholar 

  12. R. Grover, N. Gupta, O. Nanda, K. Saxena, Aligned Zinc Oxide Nanostructures for Dye-Sensitized Solar Cells: A Review, in Advances in Solar Power Generation and Energy Harvesting. ed. by V. Jain, V. Kumar, A. Verma (Springer, Singapore, 2020)

    Google Scholar 

  13. S. Mahalingam, H. Abdullah, Electron transport study of indium oxide as photoanode in DSSCs: A review. Renew. Sustain. Energy Rev. 63, 245–255 (2016)

    Article  CAS  Google Scholar 

  14. D. Devadiga, M. Selvakumar, P. Shetty et al., Dye-sensitized solar cell for indoor applications: A mini-review. J. Electron. Mater. 50, 3187–3206 (2021). https://doi.org/10.1007/s11664-021-08854-3

    Article  CAS  Google Scholar 

  15. M.Z. Toe, S.Y. Pung, K.A. Yaacob et al., Effect of TiO2 sol on the conversion efficiency of TiO2 based dye-sensitized solar cell. J Sol-Gel Sci Technol 95, 439–446 (2020). https://doi.org/10.1007/s10971-020-05325-9

    Article  CAS  Google Scholar 

  16. X. Wang, Z. Li, J. Shi, Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384 (2014)

    Article  CAS  Google Scholar 

  17. G. Liu, L. Kong, P. Guo, C.C. Stoumpos, Q. Hu, Z. Liu, Z. Cai, D.J. Gosztola, H. Mao, M.G. Kanatzidis et al., Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites. ACS Energy Lett. 2, 2518–2524 (2017)

    Article  CAS  Google Scholar 

  18. G. Liu, J. Gong, L. Kong, R.D. Schaller, Q. Hu, Z. Liu, S. Yan, W. Yang, C.C. Stoumpos, M.G. Kanatzidis et al., Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. USA 115, 8076–8081 (2018)

    Article  CAS  Google Scholar 

  19. R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92, 289–301 (2009)

    Article  CAS  Google Scholar 

  20. Z.H. Mahmoud, R.A. AL-Bayati, A.A. Khadom, Synthesis and supercapacitor performance of polyaniline-titanium dioxide-samarium oxide (PANI/TiO2-Sm2O3) nanocomposite. Chem. Pap. (2021). https://doi.org/10.1007/s11696-021-01948-6

    Article  Google Scholar 

  21. A. Saedi, A.M. Moradi, S. Kimiagar et al., Efficiency enhancement of dye-sensitized solar cells based on Gracilaria/Ulva using graphene quantum dot. Int J Environ Res 14, 393–402 (2020). https://doi.org/10.1007/s41742-020-00265-2

    Article  CAS  Google Scholar 

  22. Tetiana A. Dontsova, Anastasiya S. Kutuzova, Kateryna O. Bila, Svitlana O. Kyrii, Iryna V. Kosogina, Daria O. Nechyporuk, Enhanced photocatalytic activity of TiO2/SnO2 binary nanocomposites. J.Nanomater. (2020). https://doi.org/10.1155/2020/8349480

    Article  Google Scholar 

  23. A.D. French, Increment in evolution of cellulose crystallinity analysis. Cellulose 27, 5445–5448 (2020). https://doi.org/10.1007/s10570-020-03172-z

    Article  Google Scholar 

  24. S. Sönmezoğlu, Synthesis and characterisations of nanostructured TiO2-Te:CdO compound thin films. Mater. Technol. 29(1), 3–7 (2014). https://doi.org/10.1179/175355513X13649076812440

    Article  CAS  Google Scholar 

  25. F.K. Mammo, I.D. Amoah, K.M. Gani, L. Pillay, S.K. Ratha, F. Bux, S. Kumari, Microplastics in the environment: interactions with microbes and chemical contaminants. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.140518

    Article  Google Scholar 

  26. J. Du, G. Zhao, H. Pang, Y. Qian, H. Liu, D.J. Kang, Mater. Lett. 93, 419–422 (2013)

    Article  CAS  Google Scholar 

  27. B. Das, S.K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, S. Roy, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 10(6), 862–876 (2017)

    Article  CAS  Google Scholar 

  28. Shiming Ni, Fengyun Guo, Dongbo Wang, Shujie Jiao, Jinzhong Wang, Yong Zhang, Bao Wang, Pu. Feng, Liancheng Zhao, Modification of TiO2 nanowire arrays with Sn doping as photoanode for highly efficient dye-sensitized solar cells. Crystals 9, 113 (2019)

    Article  Google Scholar 

  29. R. Mariappan, V. Ponnuswamy, P. Suresh, Superlattices Microstruct. 52, 500–513 (2012)

    Article  CAS  Google Scholar 

  30. S.M. Ali, M.A.M. Khan, Annealing effects on structural, optical and electrical properties of TiO2/FTO heterojunction. Appl. Phys. A 126, 468 (2020). https://doi.org/10.1007/s00339-020-03656-6

    Article  CAS  Google Scholar 

  31. S.S. Shinde, A.P. Korade, C.H. Bhosale, K.Y. Rajpure, J. Alloys Compd. 551, 688–693 (2013)

    Article  CAS  Google Scholar 

  32. J. Liu, S.Y. Ma, X.L. Huang, L.G. Ma, F.M. Li, F.C. Yang, Q. Zhao, X.L. Zhang, Superlattices Microstruct. 52, 765–773 (2012)

    Article  CAS  Google Scholar 

  33. A. Arunachalam, S. Dhanapandian, C. Manoharan, Effect of Sn doping on the structural, optical and electrical properties of TiO2 films prepared by spray pyrolysis. J Mater Sci: Mater Electron (2015). https://doi.org/10.1007/s10854-015-3802-9

    Article  Google Scholar 

  34. P. Gnida, M. Libera, A. Pająk, E. Schab-Balcerzak, Examination of the effect of selected factors on the photovoltaic response of dye-sensitized solar cells. Energy Fuels 34(11), 14344–14355 (2020). https://doi.org/10.1021/acs.energyfuels.0c02188

    Article  CAS  Google Scholar 

  35. Z. Ge, Y. Zhu, C. Wang et al., Investigation of the photoanode based on graphene/zinc aluminum mixed metal oxide for dye-sensitized solar cell. J. Sol. Gel. Sci. Technol. 95, 432–438 (2020). https://doi.org/10.1007/s10971-020-05310-2

    Article  CAS  Google Scholar 

  36. K. Subalakshmi, J. Senthilselvan, K.A. Kumar, S.A. Kumar, A. Pandurangan, Solvothermal synthesis of hexagonal pyramidal and bifrustum shaped ZnO nanocrystals: natural betacyanin dye and organic Eosin Y dye sensitized DSSC efficiency, electron transport, recombination dynamics and solar photodegradation investigations. J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7445-x

    Article  Google Scholar 

  37. V. Amoli, S. Bhat, A. Maurya, B. Banerjee, A. Bhaumik, A.K. Sinha, Tailored synthesis of porous TiO2 nanocubes and nanoparallelepipeds with exposed 111 facets and mesoscopic void space: a superior candidate for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 26022–26035 (2015)

    Article  CAS  Google Scholar 

  38. Y.P. Lin, Y.Y. Chen, Y.C. Lee, Y.W. Chen-Yang, Effect of wormhole-like mesoporous anatase TiO2 nanofiber prepared by electrospinning with ionic liquid on dyesensitized solar cells. J. Phys. Chem. C 116, 13003–13012 (2012)

    Article  CAS  Google Scholar 

  39. K. Subalakshmi, J. Senthilselvan, Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency. Sol. Energy 171, 914–928 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follow: study conception, design, and data collection: ZHM; analysis and interpretation of results: RAA-B; draft manuscript preparation: AAK.

Corresponding author

Correspondence to Zaid H. Mahmoud.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, Z.H., AL-Bayati, R.A. & Khadom, A.A. Electron transport in dye-sanitized solar cell with tin-doped titanium dioxide as photoanode materials. J Mater Sci: Mater Electron 33, 5009–5023 (2022). https://doi.org/10.1007/s10854-021-07690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07690-9

Navigation