Skip to main content
Log in

Solvothermal synthesis of hexagonal pyramidal and bifrustum shaped ZnO nanocrystals: natural betacyanin dye and organic Eosin Y dye sensitized DSSC efficiency, electron transport, recombination dynamics and solar photodegradation investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research work, a novel hexagonal pyramidal and bifrustum shaped multifaceted ZnO nanocrystals with high specific surface area has been synthesized for the first time, by one pot solvothermal method without employing structure modifying surfactant or capping agent. The XRD and HRTEM results confirmed that the ZnO nanocrystals are grown in hexagonal wurtzite phase with (101) orientation. Also for the first time, by using the HRTEM images of hexagonal bifrustum shaped ZnO nanocrystal, simple geometric calculation is proposed to estimate its mass specific surface area, surface-to-volume ratio and ZnO unit concentrations. DSSC devices were fabricated by sensitizing the hexagonal ZnO nanocrystals with natural betacyanin dye (extracted from Cactus fruit pulp and Malabar nightshade berry fruit) and organic dyes (Eosin Y and Methylene blue organic dyes). Natural betacyanin Cactus dye and organic Eosin Y dye sensitizations of the multifaceted ZnO nanocrystal resulted in a high power conversion efficiency of 0.845 and 0.92%, respectively. The results on redox behavior and interfacial charge transfer kinetics of the DSSCs are discussed by using cyclic voltammetry and electrochemical impedance spectroscopy. Visible solar light assisted photodegradation behavior of the natural and organic dyes were investigated by using the multifaceted ZnO nanocrystal as photocatalyst, and it is found that natural betacyanin Cactus dye has resulted in good photostability for about one week duration and the photodegradation mechanism is explained. We successfully demonstrated for the first time a high efficiency in natural betacyanin Cactus dye sensitized nanocrystalline ZnO based DSSC device with better photostability than the organic Eosin Y sensitized device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. H. Morkoç, U. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009), pp. 1–76

  2. C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications. (Elsevier, Amsterdam, 2011)

    Google Scholar 

  3. B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)

    Article  Google Scholar 

  4. R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, A. Kumar, M.S. Akhtar, Zinc oxide nanostructure-based dye-sensitized solar cells. J. Mater. Sci. 52(9), 4743–4795 (2017). doi:10.1007/s10853-016-0668-z

    Article  Google Scholar 

  5. R. Vittal, K.-C. Ho, Zinc oxide based dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 70, 920–935 (2017). doi:10.1016/j.rser.2016.11.273

    Article  Google Scholar 

  6. J.A. Anta, E. Guillén, R. Tena-Zaera, ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 116(21), 11413–11425 (2012). doi:10.1021/jp3010025

    Article  Google Scholar 

  7. H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68(1–2), 1–11 (2006). doi:10.1016/j.apcatb.2006.07.018

    Article  Google Scholar 

  8. Z. Xiang, X. Zhou, G. Wan, G. Zhang, D. Cao, Improving energy conversion efficiency of dye-sensitized solar cells by modifying TiO2 photoanodes with nitrogen-reduced graphene oxide. ACS Sustain. Chem. Eng. 2(5), 1234–1240 (2014)

    Article  Google Scholar 

  9. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F.E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. NazeeruddinMd, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242–247 (2014)

    Article  Google Scholar 

  10. Y. Qiu, W. Chen, S. Yang, Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. J. Mater. Chem. 20(5), 1001–1006 (2010)

    Article  Google Scholar 

  11. L. Xu, Y.-L. Hu, C. Pelligra, C.-H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater. 21(13), 2875–2885 (2009)

    Article  Google Scholar 

  12. G. Samaneh, A. Mohammad, I. Mohammad, Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis. Mater. Res. Express 4(3), 035010 (2017)

    Article  Google Scholar 

  13. R. Vasireddi, B. Javvaji, H. Vardhan, D.R. Mahapatra, G.M. Hegde, Growth of zinc oxide nanorod structures: pressure controlled hydrothermal process and growth mechanism. J. Mater. Sci. 52(4), 2007–2020 (2017). doi:10.1007/s10853-016-0489-0

    Article  Google Scholar 

  14. J.J. Cheng, S.M. Nicaise, K.K. Berggren, S. Gradečak, Dimensional tailoring of hydrothermally grown zinc oxide nanowire arrays. Nano Lett. 16(1), 753–759 (2016). doi:10.1021/acs.nanolett.5b04625

    Article  Google Scholar 

  15. J.L. Gomez, O. Tigli, Zinc oxide nanostructures: from growth to application. J. Mater. Sci. 48(2), 612–624 (2013). doi:10.1007/s10853-012-6938-5

    Article  Google Scholar 

  16. J. Mou, W. Zhang, J. Fan, H. Deng, W. Chen, Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells. J. Alloys Compd. 509(3), 961–965 (2011)

    Article  Google Scholar 

  17. J. Li, X. Sang, W. Chen, C. Qin, S. Wang, Z. Su, E. Wang, The application of ZnO nanoparticles containing polyoxometalates in dye-sensitized solar cells. Eur. J. Inorg. Chem. 2013(10–11), 1951–1959 (2013)

    Article  Google Scholar 

  18. R. Krishnapriya, S. Praneetha, A. Vadivel Murugan, Energy-efficient, microwave-assisted hydro/solvothermal synthesis of hierarchical flowers and rice grain-like ZnO nanocrystals as photoanodes for high performance dye-sensitized solar cells. CrystEngComm 17(43), 8353–8367 (2015)

    Article  Google Scholar 

  19. R. Ramakrishnan, A. Aravind, S.J. Devaki, M.R. Varma, K. Mohan, Facile bioanchoring strategy for the preparation of hierarchical multiple structured ZnO crystals and its application as a photoanode in dye sensitized solar cells. J. Phys. Chem. C 118(34), 19529–19539 (2014)

    Article  Google Scholar 

  20. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21(41), 4087–4108 (2009)

    Article  Google Scholar 

  21. N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 50(51), 12321–12325 (2011)

    Article  Google Scholar 

  22. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)

    Article  Google Scholar 

  23. S.M. Reda, K.A. Soliman, Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study. Appl. Opt. 55(4), 838–845 (2016)

    Article  Google Scholar 

  24. T.M. El-Agez, A.A. El Tayyan, A. Al-Kahlout, S.A. Taya, M.S. Abdel-Latif, Dye-sensitized solar cells based on ZnO films and natural dyes. Int. J. Mater. Chem. 2(3), 105–110 (2012)

    Article  Google Scholar 

  25. M.S. Abdel-Latif, T.M. El-Agez, S.A. Taya, A.Y. Batniji, H.S. El-Ghamri, Plant seeds-based dye-sensitized solar cells. Mater. Sci. Appl. 4(9), 5 (2013)

    Google Scholar 

  26. T. Senthil, N. Muthukumarasamy, M. Kang, ZnO nanorods based dye sensitized solar cells sensitized using natural dyes extracted from beetroot, rose and strawberry. Bull. Korean Chem. Soc. 35, 1050–1056 (2014)

    Article  Google Scholar 

  27. M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, N. Sabari Arul, S. Agilan, R. Balasundaraprabhu, Dye-sensitized ZnO nanorod based photoelectrochemical solar cells with natural dyes extracted from Ixora coccinea, mulberry and beetroot. J. Mater. Sci. 22(11), 1662–1666 (2011)

    Google Scholar 

  28. E. Guillén, F. Casanueva, J.A. Anta, A. Vega-Poot, G. Oskam, R. Alcántara, C. Fernández-Lorenzo, J. Martín-Calleja, Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. J. Photochem. Photobiol. A 200(2–3), 364–370 (2008)

    Article  Google Scholar 

  29. H. Muguerra, G. Berthoux, W.Z. Yahya, Y. Kervella, V. Ivanova, J. Boucle, R. Demadrille, Electrodeposited ZnO nanowires as photoelectrodes in solid-state organic dye-sensitized solar cells. Phys. Chem. Chem. Phys. 16(16), 7472–7480 (2014)

    Article  Google Scholar 

  30. T.M. Abdel-Fattah, S. Ebrahim, M. Soliman, M. Hafez, Dye-sensitized solar cells based on polyaniline-single wall carbon nanotubes composite. ECS J. Solid State Sci. Technol. 2(6), M13–M16 (2013)

    Article  Google Scholar 

  31. S. Rani, P. Suri, P.K. Shishodia, R.M. Mehra, Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 92(12), 1639–1645 (2008)

    Article  Google Scholar 

  32. N. Mir, M. Salavati-Niasari, F. Davar, Preparation of ZnO nanoflowers and Zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells. Chem. Eng. J. 181–182, 779–789 (2012). doi:10.1016/j.cej.2011.11.085

    Article  Google Scholar 

  33. B. Ntsendwana, S. Sampath, B.B. Mamba, O.S. Oluwafemi, O.A. Arotiba, Photoelectrochemical degradation of Eosin yellowish dye on exfoliated graphite–ZnO nanocomposite electrode. J. Mater. Sci. 27(1), 592–598 (2016)

    Google Scholar 

  34. S.F. Mousavi, F. Davar, M.R. Loghman-Estarki, Controllable synthesis of ZnO nanoflowers by the modified sol–gel method. J. Mater. Sci. 27(12), 12985–12995 (2016)

    Google Scholar 

  35. A. Sobhani-Nasab, M. Behpour, Synthesis, characterization, and morphological control of Eu2Ti2O7 nanoparticles through green method and its photocatalyst application. J. Mater. Sci. 27(11), 11946–11951 (2016)

    Google Scholar 

  36. S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application. J. Mater. Sci. 27(7), 7548–7553 (2016)

    Google Scholar 

  37. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45(7), 3612–3620 (2016)

    Article  Google Scholar 

  38. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci. 27(4), 3240–3244 (2016)

    Google Scholar 

  39. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci. 27(1), 474–480 (2016)

    Google Scholar 

  40. S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, M. Mehrzad, Controlling the synthesis SrMoO4 nanostructures and investigation its photocatalyst application. J. Mater. Sci. 27(6), 5758–5763 (2016)

    Google Scholar 

  41. S. Sain, A. Kar, A. Patra, S.K. Pradhan, Structural interpretation of SnO2 nanocrystals of different morphologies synthesized by microwave irradiation and hydrothermal methods. CrystEngComm 16(6), 1079–1090 (2014). doi:10.1039/C3CE42281J

    Article  Google Scholar 

  42. T. Shinagawa, K. Shibata, O. Shimomura, M. Chigane, R. Nomura, M. Izaki, Solution-processed high-haze ZnO pyramidal textures directly grown on a TCO substrate and the light-trapping effect in Cu2O solar cells. J. Mater. Chem. C 2(16), 2908–2917 (2014). doi:10.1039/C3TC32413C

    Article  Google Scholar 

  43. A. Umar, B. Karunagaran, E.K. Suh, Y.B. Hahn, Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 17(16), 4072 (2006)

    Article  Google Scholar 

  44. A.M. Holi, Z. Zainal, Z.A. Talib, H.-N. Lim, C.-C. Yap, S.-K. Chang, A.K. Ayal, Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application. J. Mater. Sci. 27(7), 7353–7360 (2016). doi:10.1007/s10854-016-4707-y

    Google Scholar 

  45. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, X-Ray Analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 4, 21–28 (2014)

    Article  Google Scholar 

  46. T.C. Damen, SPS Porto, B. Tell, Raman effect in zinc oxide. Phys. Rev. 142:570–574 (1996)

    Article  Google Scholar 

  47. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39(3), 2283–2292 (2013)

    Article  Google Scholar 

  48. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 4, 4596 (2014)

    Article  Google Scholar 

  49. B.G. Wang, E.W. Shi, W.Z. Zhong, Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions. Cryst. Res. Technol. 32(5), 659–667 (1997)

    Article  Google Scholar 

  50. D.R. Lide, Handbook of Chemistry and Physics, vol. 85, 85th edn. (CRC press, Boca Raton, 2004–2005)

  51. W. van der Stam, A.P. Gantapara, Q.A. Akkerman, G. Soligno, J.D. Meeldijk, R. van Roij, M. Dijkstra, C. de Mello Donega, Self-assembly of colloidal hexagonal bipyramid- and bifrustum-shaped ZnS nanocrystals into two-dimensional superstructures. Nano Lett. 14(2), 1032–1037 (2014). doi:10.1021/nl4046069

    Article  Google Scholar 

  52. B. Jia, M. Qin, X. Jiang, Z. Zhang, L. Zhang, Y. Liu, X. Qu, Synthesis, characterization, shape evolution, and optical properties of copper sulfide hexagonal bifrustum nanocrystals. J. Nanopart. Res. 15(3), 1469 (2013). doi:10.1007/s11051-013-1469-9

    Article  Google Scholar 

  53. R. Liu, F. Liu, Y. Su, D. Wang, Q. Shen, Catanionic surfactant-assisted mineralization and structural properties of single-crystal-like vaterite hexagonal bifrustums. Langmuir 31(8), 2502–2510 (2015). doi:10.1021/la503726y

    Article  Google Scholar 

  54. Y. Chen, T. Liu, C. Chen, R. Sun, S. Lv, M. Saito, S. Tsukimoto, Z. Wang, Facile synthesis of hybrid hexagonal CeF3 nano-disks on CeO2 frustum pyramids. Mater. Lett. 92, 7–10 (2013). doi:10.1016/j.matlet.2012.10.068

    Article  Google Scholar 

  55. Y. Ding, Synthesis of Cobalt-Zinc Phosphates Templated by Polyamines. (InTech, Rijeka, 2012)

    Book  Google Scholar 

  56. M.Y. Chia, W.S. Chiu, SNH Daud, P.S. Khiew, S. Radiman, R. Abd-Shukor, MAA Hamid, Structural- and optical-property characterization of three-dimensional branched ZnO nanospikes. Mater. Charact. 106, 185–194 (2015). doi:10.1016/j.matchar.2015.05.031

    Article  Google Scholar 

  57. S. Jingchang, Z. Ting, M. Zhangwei, L. Ming, C. Cheng, L. Hongwei, B. Jiming, L. Chengren, Controllable end shape modification of ZnO nano-arrays/rods by a simple wet chemical etching technique. J. Phys. D 48(36), 365303 (2015)

    Article  Google Scholar 

  58. N. Qin, Q. Xiang, H. Zhao, J. Zhang, J. Xu, Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm 16(30), 7062–7073 (2014). doi:10.1039/C4CE00637B

    Article  Google Scholar 

  59. J. Wang, J. Lian, J.R. Greer, W.D. Nix, K.-S. Kim, Size effect in contact compression of nano- and microscale pyramid structures. Acta Mater. 54(15), 3973–3982 (2006). doi:10.1016/j.actamat.2006.04.030

    Article  Google Scholar 

  60. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, W.J. Padilla, Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays. Adv. Mater. 23(48), 5796–5800 (2011). doi:10.1002/adma.201103399

    Article  Google Scholar 

  61. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J. Appl. Phys. 95(3), 1246–1250 (2004)

    Article  Google Scholar 

  62. S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.P. Lillerud, M. Bjorgen, A. Zecchina, Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. (2004). doi:10.1039/b407246 d

    Google Scholar 

  63. K. Ashok Kumar, J. Manonmani, J. Senthilselvan, Effect on interfacial charge transfer resistance by hybrid co-sensitization in DSSC applications. J. Mater. Sci. 25(12), 5296–5301 (2014)

    Google Scholar 

  64. S.H. Kim, K.-H. Choi, H.-M. Lee, D.-H. Hwang, L.-M. Do, H.Y. Chu, T. Zyung, Impedance spectroscopy of single- and double-layer polymer light-emitting diode. J. Appl. Phys. 87(2), 882–888 (2000)

    Article  Google Scholar 

  65. A. Mishra, M.K. Fischer, P. Bauerle, Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. Engl. 48(14), 2474–2499 (2009)

    Article  Google Scholar 

  66. S. Wybraniec, P. Stalica, A. Sporna, B. Nemzer, Z. Pietrzkowski, T. Michalowski, Antioxidant activity of betanidin: electrochemical study in aqueous media. J. Agric. Food. Chem. 59(22), 12163–12170 (2011)

    Article  Google Scholar 

  67. J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5(24), 5360–5364 (2003)

    Article  Google Scholar 

  68. Z. Zhang, S.M. Zakeeruddin, B.C. O’Regan, R. Humphry-Baker, M. Grätzel, Influence of 4-Guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J. Phys. Chem. B 109(46), 21818–21824 (2005)

    Article  Google Scholar 

  69. K.A. Kumar, K. Subalakshmi, J. Senthilselvan, Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications. J. Solid State Electrochem. 20(7), 1921–1932 (2016)

    Article  Google Scholar 

  70. A. Mashreghi, F. Bahrami Moghadam, Effect of photoanode active area on photovoltaic parameters of dye sensitized solar cells through its effect on series resistance investigated by electrochemical impedance spectroscopy. J. Solid State Electrochem. 20(5), 1361–1368 (2016)

    Article  Google Scholar 

  71. X. Gan, X. Li, X. Gao, X. He, F. Zhuge, Deposition potential dependence of ZnO–Eosin Y hybrid thin films prepared by electrochemical deposition and their photoelectrochemical properties. Mater. Chem. Phys. 114(2–3), 920–925 (2009). doi:10.1016/j.matchemphys.2008.10.073

    Article  Google Scholar 

  72. S. Nagaya, H. Nishikiori, H. Mizusaki, H. Wagata, K. Teshima, Formation process of Eosin Y adsorbing ZnO particles by electroless deposition and their photoelectric conversion properties. ACS Appl. Mater. Interfaces 7(21), 11592–11598 (2015). doi:10.1021/acsami.5b02570

    Article  Google Scholar 

  73. J.L. McHale, Hierarchal light-harvesting aggregates and their potential for solar energy applications. J. Phys. Chem. Lett. 3(5), 587–597 (2012). doi:10.1021/jz3000678

    Article  Google Scholar 

  74. G. Calogero, J.-H. Yum, A. Sinopoli, G. Di Marco, M. Grätzel, M.K. Nazeeruddin, Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol. Energy 86(5), 1563–1575 (2012). doi:10.1016/j.solener.2012.02.018

    Article  Google Scholar 

  75. C. Sandquist, J.L. McHale, Improved efficiency of betanin-based dye-sensitized solar cells. J. Photochem. Photobiol. A 221(1), 90–97 (2011). doi:10.1016/j.jphotochem.2011.04.030

    Article  Google Scholar 

  76. R. Ramamoorthy, N. Radha, G. Maheswari, S. Anandan, S. Manoharan, R. Victor Williams, Betalain and anthocyanin dye-sensitized solar cells. J. Appl. Electrochem. 46(9), 929–941 (2016). doi:10.1007/s10800-016-0974-9

    Article  Google Scholar 

  77. N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha, D. Velauthapillai, Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells. Appl. Nanosci. 5(3), 297–303 (2015). doi:10.1007/s13204-014-0317-2

    Article  Google Scholar 

  78. K.U. Isah, U. Ahmadu, A. Idris, M.I. Kimpa, U.E. Uno, M.M. Ndamitso, N. Alu, Betalain pigments as natural photosensitizers for dye-sensitized solar cells: the effect of dye pH on the photoelectric parameters. Mater. Renew. Sustain. Energy 4(1), 39 (2014). doi:10.1007/s40243-014-0039-0

    Article  Google Scholar 

  79. K.M. Herbach, F.C. Stintzing, R. Carle, Betalain stability and degradation—structural and chromatic aspects. J. Food Sci. 71(4), R41–R50 (2006). doi:10.1111/j.1750-3841.2006.00022.x

    Article  Google Scholar 

  80. A.R. Hernandez-Martinez, M. Estevez, S. Vargas, F. Quintanilla, R. Rodriguez, New dye-sensitized solar cells obtained from extracted bracts of bougainvillea glabra and spectabilis betalain pigments by different purification processes. Int. J. Mol. Sci. 12(9), 5565–5576 (2011). doi:10.3390/ijms12095565

    Article  Google Scholar 

  81. G. Calogero, G. Di Marco, S. Cazzanti, S. Caramori, R. Argazzi, A. Di Carlo, C.A. Bignozzi, Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. Int. J. Mol. Sci. 11(1), 254–267 (2010). doi:10.3390/ijms11010254

    Article  Google Scholar 

  82. D. Zhang, S.M. Lanier, J.A. Downing, J.L. Avent, J. Lum, J.L. McHale, Betalain pigments for dye-sensitized solar cells. J. Photochem. Photobiol. A 195(1), 72–80 (2008). doi:10.1016/j.jphotochem.2007.07.038

    Article  Google Scholar 

  83. J. Kaur, S. Bansal, S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Phys. B 416, 33–38 (2013)

    Article  Google Scholar 

  84. R. Singh, P.B. Barman, D. Sharma, Synthesis, structural and optical properties of Ag doped ZnO nanoparticles with enhanced photocatalytic properties by photo degradation of organic dyes. J. Mater. Sci. 28(8), 5705–5717 (2017). doi:10.1007/s10854-016-6242-2

    Google Scholar 

  85. S. Manchali, K.N.C. Murthy, S. Nagaraju, B. Neelwarne, Stability of betalain pigments of red beet. In: B Neelwarne Red beet biotechnology: food and pharmaceutical applications. doi:10.1007/978-1-4614-3458-0_3 (Springer, Boston, 2012), pp. 55–74

    Google Scholar 

  86. K.M. Herbach, C. Maier, F.C. Stintzing, R. Carle, Effects of processing and storage on juice colour and betacyanin stability of purple pitaya (Hylocereus polyrhizus) juice. Eur. Food Res. Technol. 224(5), 649–658 (2007). doi:10.1007/s00217-006-0354-5

    Article  Google Scholar 

  87. H.M.C Azeredo, Betalains: properties, sources, applications, and stability—a review. Int. J. Food Sci. Technol. 44(12), 2365–2376 (2009). doi:10.1111/j.1365-2621.2007.01668.x

    Article  Google Scholar 

  88. Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 15(1):19–38. doi:10.1016/j.tifs.2003.07.004

    Article  Google Scholar 

  89. S. Wybraniec, K. Starzak, A. Skopińska, B. Nemzer, Z. Pietrzkowski, T. Michałowski, Studies on Nonenzymatic oxidation mechanisms in neobetanin, betanin, and decarboxylated betanins. J. Agric. Food. Chem. 61(26), 6465–6476 (2013). doi:10.1021/jf400818s

    Article  Google Scholar 

  90. J.H. von Elbe, E.L. Attoe, Oxygen involvement in betanine degradation—Measurement of active oxygen species and oxidation reduction potentials. Food. Chem. 16(1), 49–67 (1985). doi:10.1016/0308-8146(85)90019-6

    Article  Google Scholar 

  91. F.J. Knorr, J.L. McHale, A.E. Clark, A. Marchioro, J.-E. Moser, Dynamics of interfacial electron transfer from betanin to nanocrystalline TiO2: the pursuit of two-electron injection. J. Phys. Chem. C 119(33), 19030–19041 (2015). doi:10.1021/acs.jpcc.5b05896

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author JS is grateful to the Department of Science and Technology (DST) India, DST-PURSE co-coordinators of University of Madras Prof. S. Sriman Naryanan, Department of Analytical Chemistry and Prof. P. Ramamoorthy, Department of Inorganic Chemistry for sanctioning the research grant under DST-PURSE Phase-II program to carry out this work and KS thank for the award of Research Fellowship [668/2014(JRF), Dt-16 Dec 2014]. JS thank Prof. S. Balakumar, Director, National Centre for Nanoscience, Nanotechnology (NCNSNT), University of Madras, Chennai, India for Raman, XPS and FESEM analysis and Mr.S.Viswanathan, Scientific Assistant, School of Advanced Science, VIT University, Vellore, India for painstakingly taking the wonderful images of hexagonal bifrustum shaped ZnO nanostructure by HRTEM. The support of CENSE, Indian Institute of Science, Bangalore, India is kindly acknowledged for photovoltaic efficiency measurement using their solar simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Senthilselvan.

Ethics declarations

Conflict of interest

The authors declare that they have is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 726 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subalakshmi, K., Senthilselvan, J., Kumar, K.A. et al. Solvothermal synthesis of hexagonal pyramidal and bifrustum shaped ZnO nanocrystals: natural betacyanin dye and organic Eosin Y dye sensitized DSSC efficiency, electron transport, recombination dynamics and solar photodegradation investigations. J Mater Sci: Mater Electron 28, 15565–15595 (2017). https://doi.org/10.1007/s10854-017-7445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7445-x

Navigation