Skip to main content

Advertisement

Log in

Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent era of modern and bendable technology, energy dearth arises as a paramount subject around the globe with a dire demand of flexible and lightweight energy storage devices. This study targets fabrication of reduced graphene oxide (rGO) and utility of abundantly available, cost effective, and environment friendly lignocelluloses (LC) fibers extracted from Carica papaya source, as a binder to bind active material (rGO) as robust and compact paper sheet. Fabricated samples were analyzed by X-ray diffraction for crystallographic analysis, Scanning electron microscopy, Transmission electron microscope for morphology, Fourier transform infrared spectroscopy for structural bonding, and Raman spectroscopy for vibrational modes. Robust and bendable rGO/LC paper electrode was tested for energy storage application by employing in different characterizations, i.e., cyclic voltammetry for capacitive behavior, galvanostatic charge–discharge for symmetric EDLC, and electrochemical impedance spectroscopy for resistive charge kinetics, respectively. rGO/LC composite sheet employed as working electrode in 3-electrode CV measurements and revealed specific capacitance of 591 F/g at a scan rate of 5 mV/s by keeping the undistorted shape of voltammograms at higher scan rates which present it as a suitable candidate for modern flexible and energy storage devices. rGO/LC-based symmetric cell revealed the highest specific capacitance of 228 F/g at applied current density of 0.1 A/g, the energy density of 6.3 Wh/kg, and power density of 129 W/kg, respectively. rGO/LC-based symmetric cell confirmed the cycling stability by revealing capacitance retention of 82% after 200 cycles. It can conclude that biomass-based rGO paper sheet can be a potential candidate as environmentally safe with remarkable electrochemical activity in energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Ahmed, M. Rafat, Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications. Mater. Res. Express 5, 015507 (2018)

    Article  CAS  Google Scholar 

  2. P. Khanra, M.E. Uddin, N.H. Kim, T. Kuila, S.H. Lee, J.H. Lee, Electrochemical performance of reduced graphene oxide surface-modified with 9-anthracene carboxylic acid. RSC Adv. 5, 6443–6451 (2015)

    Article  CAS  Google Scholar 

  3. M. Zainuddin, N.N. Raikhan, N. Othman, W. Abdullah, Synthesis of reduced graphene oxide (rGO) using different treatments of Graphene oxide (GO). In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, pp. 012046.

  4. M. Aadil, S. Zulfiqar, P.O. Agboola, M.F.A. Aboud, I. Shakir, M.F. Warsi, Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications. Synth. Met. 272, 116645 (2021)

    Article  CAS  Google Scholar 

  5. Z. Çıplak, A. Yıldız, N. Yıldız, Green preparation of ternary reduced graphene oxide-au@ polyaniline nanocomposite for supercapacitor application. J. Energy Storage 32, 101846 (2020)

    Article  Google Scholar 

  6. N. Sykam, V. Madhavi, G.M. Rao, Rapid and efficient green reduction of graphene oxide for outstanding supercapacitors and dye adsorption applications. J. Environ. Chem. Eng. 6, 3223–3232 (2018)

    Article  CAS  Google Scholar 

  7. S. Ramanathan, E. Elanthamilan, A. Obadiah, A. Durairaj, J.P. Merlin, S. Ramasundaram, S. Vasanthkumar, Aloe vera (L.) Burm. f. extract reduced graphene oxide for supercapacitor application. J. Mater. Sci.: Mater. Electron. 28, 16648–16657 (2017)

    CAS  Google Scholar 

  8. Z. Jiang, Y. Wang, C. Yang, Reduced graphene oxide–based microsupercapacitors. Graphene Mater.: Adv. Appl. 105 (2015)

  9. A. Masood, Z. Shoukat, Z. Yousaf, M. Sana, M. Faisal Iqbal, A. Rehman, I. Sultana, A. Razaq, High capacity natural fiber coated conductive and electroactive composite papers electrode for energy storage applications. J. Appl. Polym. Sci. 136, 47282 (2019)

    Article  CAS  Google Scholar 

  10. V.K. Thakur, M.K. Thakur, Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd. Polym. 109, 102–117 (2014)

    Article  CAS  Google Scholar 

  11. S. Iwamoto, T. Endo, 3 nm thick lignocellulose nanofibers obtained from esterified wood with maleic anhydride. ACS Macro Lett. 4, 80–83 (2015)

    Article  CAS  Google Scholar 

  12. D. Chandramohan, K. Marimuthu, A review on natural fibers. Int. J. Res. Rev. Appl. Sci. 8, 194–206 (2011)

    Google Scholar 

  13. R.C. Kuhad, A. Singh, Lignocellulose biotechnology: current and future prospects. Crit. Rev. Biotechnol. 13, 151–172 (1993)

    Article  CAS  Google Scholar 

  14. A. Razaq, A.A. Khan, M. Asif, S. Iqbal, J. Ali, F. Manzoor, M. Awan, Dielectric studies of environmentally friendly and flexible lignocelluloses fibrils for miniaturization of patch antenna. Mod. Phys. Lett. B 29, 1550187 (2015)

    Article  CAS  Google Scholar 

  15. F. Wang, D. Ouyang, Z. Zhou, S.J. Page, D. Liu, X. Zhao, Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 57, 247–280 (2021)

    Article  Google Scholar 

  16. M. Sevilla, G. Ferrero, A. Fuertes, Graphene-cellulose tissue composites for high power supercapacitors. Energy Storage Mater. 5, 33–42 (2016)

    Article  Google Scholar 

  17. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  CAS  Google Scholar 

  18. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  19. M.F. Iqbal, M.N. Ashiq, A. Razaq, M. Saleem, B. Parveen, M.-U. Hassan, Excellent electrochemical performance of graphene oxide based strontium sulfide nanorods for supercapacitor applications. Electrochim. Acta 273, 136–144 (2018)

    Article  CAS  Google Scholar 

  20. Z.-D. Chen, Y.-G. Wang, L. Li, R.-D. Lv, L.-L. Wei, S.-C. Liu, J. Wang, X. Wang, Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser. Chin. Phys. B 27, 084206 (2018)

    Article  CAS  Google Scholar 

  21. S. Shukla, S. Saxena, Spectroscopic investigation of confinement effects on optical properties of graphene oxide. Appl. Phys. Lett. 98, 073104 (2011)

    Article  CAS  Google Scholar 

  22. F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  CAS  Google Scholar 

  23. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547–2556 (2009)

    Article  CAS  Google Scholar 

  24. K. Plermjai, K. Boonyarattanakalin, W. Mekprasart, S. Pavasupree, W. Phoohinkong, W. Pecharapa, Extraction and characterization of nanocellulose from sugarcane bagasse by ball-milling-assisted acid hydrolysis. In: AIP Conference Proceedings, AIP Publishing LLC, 2018, pp. 020005.

  25. Y. Kawashima, G. Katagiri, Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys. Rev. B 52, 10053 (1995)

    Article  CAS  Google Scholar 

  26. I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, Raman spectroscopy of graphene and related materials. New Develop. Photon Mater. Res. 1, 1–20 (2013)

    Article  Google Scholar 

  27. Q.A. Khan, A. Shaur, T.A. Khan, Y.F. Joya, M. Awan, Characterization of reduced graphene oxide produced through a modified Hoffman method. Cogent Chem. 3, 1298980 (2017)

    Article  CAS  Google Scholar 

  28. L.-L. Tan, W.-J. Ong, S.-P. Chai, A.R. Mohamed, Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 8, 1–9 (2013)

    Article  CAS  Google Scholar 

  29. V.H. Le, T.H. Nguyen, H.H. Nguyen, L.T.N. Huynh, A.L. Vo, T.K.T. Nguyen, D.T. Nguyen, V.Q. Lam, Fabrication and electrochemical behavior investigation of a Pt-loaded reduced graphene oxide composite (Pt@ rGO) as a high-performance cathode for dye-sensitized solar cells. Int. J. Photoenergy 2020, 1–10 (2020)

    Article  CAS  Google Scholar 

  30. S. Perumbilavil, P. Sankar, T. Priya Rose, R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl. Phys. Lett., 107, 051104 (2015)

  31. Y. Gong, D. Li, Q. Fu, C. Pan, Influence of graphene microstructures on electrochemical performance for supercapacitors. Progress Nat. Sci.: Mater. Int. 25, 379–385 (2015)

    Article  CAS  Google Scholar 

  32. K. Dž, F. Korać, S. Gutić, Graphite, graphite oxide, graphene oxide, and reduced graphene oxide as active materials for electrochemical double layer capacitors: a comparative study. Bull. Chem. Technol. Bosnia Herzegovina 45, 35–38 (2015)

    Google Scholar 

  33. M.F. Iqbal, M.N. Ashiq, M.-U. Hassan, R. Nawaz, A. Masood, A. Razaq, Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications. Energy 159, 151–159 (2018)

    Article  CAS  Google Scholar 

  34. Y. Zhao, W. Shi, B. Van der Bruggen, C. Gao, J. Shen, Tunable nanoscale interlayer of graphene with symmetrical polyelectrolyte multilayer architecture for lithium extraction. Adv. Mater. Interfaces 5, 1701449 (2018)

    Article  CAS  Google Scholar 

  35. B. Subramanya, D.K. Bhat, Novel eco-friendly synthesis of graphene directly from graphite using 2,2,6,6-tetramethylpiperidine 1-oxyl and study of its electrochemical properties. J. Power Sources 275, 90–98 (2015)

    Article  CAS  Google Scholar 

  36. Y. Sun, Q. Wu, Y. Xu, H. Bai, C. Li, G. Shi, Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. J. Mater. Chem. 21, 7154–7160 (2011)

    Article  CAS  Google Scholar 

  37. S. Ramesh, S. Khandelwal, K.Y. Rhee, D. Hui, Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Compos. B Eng. 138, 45–54 (2018)

    Article  CAS  Google Scholar 

  38. V. Veeramani, M. Sivakumar, S.-M. Chen, R. Madhu, H.R. Alamri, Z.A. Alothman, M.S.A. Hossain, C.-K. Chen, Y. Yamauchi, N. Miyamoto, Lignocellulosic biomass-derived, graphene sheet-like porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC Adv. 7, 45668–45675 (2017)

    Article  CAS  Google Scholar 

  39. H.-M. Ji, A.-L. Luan, C.-C. Dai, M. Li, G. Yang, W.-H. Hou, Highly active free-standing and flexible MoS2/rGO sandwich-structured films for supercapacitor applications. Solid State Commun. 297, 45–49 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from Higher Education Commission, Pakistan; NRPU Grant No: 5334/Federal/NRPU/R&D/HEC/2016 is greatly acknowledged. This study was funded by Higher Education Commission, Pakistan (5334/Federal/NRPU/R&D/HEC/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Razaq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, F., Masood, A., Khan, M.I. et al. Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications. J Mater Sci: Mater Electron 33, 2222–2233 (2022). https://doi.org/10.1007/s10854-021-07430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07430-z

Navigation