Skip to main content
Log in

In situ solvothermal method of C3N5@NH2-MIL-125 composites with enhanced visible-light photocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to increase the visible-light photocatalytic performance for the degradation of Rhodamine B (RhB), C3N5@NH2-MIL-125-x (x = 1, 2, 3) were compounded by a typical in situ solvothermal method. XRD, FT-IR, and SEM were employed to investigate the structural characteristics of C3N5@NH2-MIL-125-x which were manifested to be successfully prepared; UV–Visible absorption spectra and photoluminescence spectra of C3N5@NH2-MIL-125-x were carried out to evaluate the photocatalytic activity. The results indicated that the composites of C3N5@NH2-MIL-125-x could boost the visible-light absorption and separation efficiency of photogenerated e–h+ pairs. Then the photocatalytic degradation experiments and the kinetics properties study for RhB showed C3N5@NH2-MIL-125-3 had the best photocatalytic degradation efficiency up to 93.3% under the visible light. Notably, the recyclability experiments with five cycles and thermal analysis proved C3N5@NH2-MIL-125-3 had a high chemical stability and thermal stability (below 500 °C). Moreover, the active species capture experiments demonstrated –O2 radicals were the primary reactive species, while the OH radicals and h+ were the subordinate reactive species in the photocatalytic degradation of RhB. In addition, the EIS and TPRs further verified C3N5@NH2-MIL-125-3 possessed a higher separation efficiency of photogenerated e–h+ pairs. This work provides an effective strategy for compositing NH2-MIL-125 (Ti) and C3N5 toward photocatalytic degradation of the organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Yu, X. Wu, J. Wang, W. Jia, G. Zhu, F. Qu, Dalton Trans 42, 4633 (2013). https://doi.org/10.1039/c2dt32486e

    Article  CAS  Google Scholar 

  2. Y. Dong, L. Xing, F. Hu, A. Umar, X. Wu, Vacuum 150, 35 (2018). https://doi.org/10.1016/j.vacuum.2018.01.023

    Article  CAS  Google Scholar 

  3. W. Sun, L. Xiao, X. Wu, J. Alloys Compd. 772, 465 (2019). https://doi.org/10.1016/j.jallcom.2018.09.185

    Article  CAS  Google Scholar 

  4. R.M. Abdelhameed, E. Alzahrani, A.A. Shaltout, H.E. Emam, J. Ind. Eng. Chem. 94, 134 (2021). https://doi.org/10.1016/j.jiec.2020.10.025

    Article  CAS  Google Scholar 

  5. R.M. Abdelhameed, M. El-Shahat, H.E. Emam, Carbohydr. Polym. 247, 116695 (2020). https://doi.org/10.1016/j.carbpol.2020.116695

    Article  CAS  Google Scholar 

  6. J. Jia, Y. Wang, M. Xu, YWu. Ml Qi, G. Zhao, J. Sol-Gel Sci. Technol. 93, 123 (2019). https://doi.org/10.1007/s10971-019-05172-3

    Article  CAS  Google Scholar 

  7. S. Vadivel, S. Hariganesh, B. Paul, G. Mamba, P. Puviarasu, Colloids Surf.: A Physicochem. Eng. Asp. (2020). https://doi.org/10.1016/j.colsurfa.2020.124583

    Article  Google Scholar 

  8. C.-C. Wang, X.-H. Yi, P. Wang, Appl. Catal. B 247, 24 (2019). https://doi.org/10.1016/j.apcatb.2019.01.091

    Article  CAS  Google Scholar 

  9. A. Zulys, A. Adawiah, J. Gunlazuardi, M.D.L. Yudhi, Bull. Chem. React. Eng. Catal. 16, 170 (2021). https://doi.org/10.9767/bcrec.16.1.10309.170-178

    Article  CAS  Google Scholar 

  10. S. Chen, G. Hai, H. Gao et al., Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.126886

    Article  Google Scholar 

  11. Y.P. Li, Y.N. Zhao, S.N. Li et al., Adv. Sci. (2021). https://doi.org/10.1002/advs.202003141

    Article  Google Scholar 

  12. Y.-P. Xia, C.-X. Wang, M.-H. Yu, X.-H. Bu, Chin. Chem. Lett. 32, 1153 (2021). https://doi.org/10.1016/j.cclet.2020.09.014

    Article  CAS  Google Scholar 

  13. H. Daglar, H.C. Gulbalkan, G. Avci et al., Angew. Chem. Int. Ed. Engl. 60, 7828 (2021). https://doi.org/10.1002/anie.202015250

    Article  CAS  Google Scholar 

  14. J. Rogacka, A. Seremak, A. Luna-Triguero et al., Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.126392

    Article  Google Scholar 

  15. É. Whelan, F.W. Steuber, T. Gunnlaugsson, W. Schmitt, Coord. Chem. Rev. (2021). https://doi.org/10.1016/j.ccr.2020.213757

    Article  Google Scholar 

  16. G. Qin, L. Li, W. Bai, Z. Liu, F. Yuan, Y. Ni, Dyes and Pigments (2021). https://doi.org/10.1016/j.dyepig.2021.109309

    Article  Google Scholar 

  17. Z. Li, Z. Zhan, Y. Jia, Z. Li, M. Hu, J. Ind. Eng. Chem. 97, 180 (2021). https://doi.org/10.1016/j.jiec.2020.12.036

    Article  CAS  Google Scholar 

  18. M. Abedi, S.S. Abolmaali, R. Heidari, S. Mohammadi Samani, A.M. Tamaddon, Int. J. Pharm. 602, 1685 (2021). https://doi.org/10.1016/j.ijpharm.2021.120685

    Article  CAS  Google Scholar 

  19. M. Chen, R. Dong, J. Zhang et al., ACS Appl. Mater. Interfaces 13, 18554 (2021). https://doi.org/10.1021/acsami.1c02045

    Article  CAS  Google Scholar 

  20. M. Ozsoy, V. Atiroglu, G. Guney Eskiler, A. Atiroglu, A. Deveci Ozkan, M. Ozacar, Colloids Surf. B: Biointerfaces 204, 111788 (2021). https://doi.org/10.1016/j.colsurfb.2021.111788

    Article  CAS  Google Scholar 

  21. C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831 (2014). https://doi.org/10.1039/c4ee01299b

    Article  CAS  Google Scholar 

  22. C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Appl. Catal. B 193, 198 (2016). https://doi.org/10.1016/j.apcatb.2016.04.030

    Article  CAS  Google Scholar 

  23. H. Wang, M. Li, Q. Lu, Y. Cen, Y. Zhang, S. Yao, ACS Sustain Chem. Eng. 7, 625 (2018). https://doi.org/10.1021/acssuschemeng.8b04182

    Article  CAS  Google Scholar 

  24. H. Wang, M. Li, H. Li, Q. Lu, Y. Zhang, S. Yao, Mater. Des. 162, 210 (2019). https://doi.org/10.1016/j.matdes.2018.11.049

    Article  CAS  Google Scholar 

  25. T. Zhang, W. Lin, Chem. Soc. Rev. 43, 5982 (2014). https://doi.org/10.1039/c4cs00103f

    Article  CAS  Google Scholar 

  26. X. Chen, X. Peng, L. Jiang et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125080

    Article  Google Scholar 

  27. I.Y. Kim, S. Kim, X. Jin et al., Angew. Chem. Int. Ed. Engl. 57, 17135 (2018). https://doi.org/10.1002/anie.201811061

    Article  CAS  Google Scholar 

  28. Y. Fu, D. Sun, Y. Chen et al., Angew. Chem. Int. Ed. Engl. 51, 3364 (2012). https://doi.org/10.1002/anie.201108357

    Article  CAS  Google Scholar 

  29. J. Wang, A.S. Cherevan, C. Hannecart et al., Appl. Catal. B: Environ. (2021). https://doi.org/10.1016/j.apcatb.2020.119626

    Article  Google Scholar 

  30. S. Vadivel, S. Hariganesh, B. Paul et al., Chem. Phys. Lett. (2020). https://doi.org/10.1016/j.cplett.2019.136862

    Article  Google Scholar 

  31. M. Wang, L. Yang, J. Yuan et al., RSC Adv. 8, 12459 (2018). https://doi.org/10.1039/c8ra00882e

    Article  CAS  Google Scholar 

  32. P. Kumar, E. Vahidzadeh, U.K. Thakur et al., J. Am. Chem. Soc. 141, 5415 (2019). https://doi.org/10.1021/jacs.9b00144

    Article  CAS  Google Scholar 

  33. M.L. Haiyan Wang, Huan Li, Lu. Qiujun, Youyu Zhang, Shouzhuo Yao, Mater. Design 162, 210–218 (2019). https://doi.org/10.1016/j.matdes.2018.11.049

    Article  CAS  Google Scholar 

  34. H.E. Emam, H.B. Ahmed, E. Gomaa, M.H. Helal, R.M. Abdelhameed, J. Photochem. Photobiol, A: Chem. (2019). https://doi.org/10.1016/j.jphotochem.2019.111986

    Article  Google Scholar 

  35. H.E. Emam, M. El-Shahat, R.M. Abdelhameed, J. Hazard. Mater. 414, 125509 (2021). https://doi.org/10.1016/j.jhazmat.2021.125509

    Article  CAS  Google Scholar 

  36. B. Tatykayev, B. Chouchene, L. Balan et al., Nanomaterials (Basel) (2020). https://doi.org/10.3390/nano10071387

    Article  Google Scholar 

  37. H. Yin, Y. Cao, T. Fan et al., Sci. Total Environ. 754, 141926 (2021). https://doi.org/10.1016/j.scitotenv.2020.141926

    Article  CAS  Google Scholar 

  38. C. Wei, W. Zhang, X. Wang, A. Li, J. Guo, B. Liu, Catal. Lett. 151, 1961 (2020). https://doi.org/10.1007/s10562-020-03462-y

    Article  CAS  Google Scholar 

  39. P. Kumar, U.K. Thakur, K. Alam et al., Carbon 137, 174 (2018). https://doi.org/10.1016/j.carbon.2018.05.019

    Article  CAS  Google Scholar 

  40. X. Zhang, P. Li, L. Qiu, X. Xun, Y. Si, T. Liang, H. Liu, J. Chu, J. Guob, S. Duo, New J. Chem. (2020). https://doi.org/10.1039/D0NJ00746C

    Article  Google Scholar 

  41. K. Yang, X. Wen, J. Mater. Sci.: Mater. Electron. 31, 20984 (2020). https://doi.org/10.1007/s10854-020-04612-z

    Article  CAS  Google Scholar 

  42. R.M. Abdelhameed, H. Abdel-Gawad, H.E. Emam, J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105121

    Article  Google Scholar 

  43. W. Cheng, Y. Wang, S. Ge, X. Ding, Z. Cui, Q. Shao, Adv. Compos. Hybrid Mater. 4, 150 (2021). https://doi.org/10.1007/s42114-020-00199-5

    Article  CAS  Google Scholar 

  44. T. Zhou, G. Zhang, H. Zhang et al., Catal. Sci. Technol. 8, 2402 (2018). https://doi.org/10.1039/c8cy00182k

    Article  CAS  Google Scholar 

  45. L. Hu, D. Mao, L.H. Yang et al., Environ. Res. 203, 111874 (2021). https://doi.org/10.1016/j.envres.2021.111874

    Article  CAS  Google Scholar 

  46. Y. Chen, B. Zhai, Y. Liang, Y. Li, J. Li, J. Solid State Chem. 274, 32 (2019). https://doi.org/10.1016/j.jssc.2019.01.038

    Article  CAS  Google Scholar 

  47. L. Hu, H. Yuan, L. Zou, F. Chen, X. Hu, Appl. Surf. Sci. 355, 706 (2015). https://doi.org/10.1016/j.apsusc.2015.04.166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate Wang Hui from the Analytical & Testing Center of Sichuan University for her help with SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachuan Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 692 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhu, D. In situ solvothermal method of C3N5@NH2-MIL-125 composites with enhanced visible-light photocatalytic performance. J Mater Sci: Mater Electron 33, 388–398 (2022). https://doi.org/10.1007/s10854-021-07308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07308-0

Navigation