Skip to main content
Log in

Hierarchical TiO2/AgBr core/shell microspheres with enhanced visible light photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2/AgBr core/shell microspheres have been successfully synthesized via a two-step solvothermal process. The TiO2 core (1.5 µm in average diameter) is coated with a shell (100 nm in average thickness) consisting of AgBr nanoparticles of 6 nm in average size. The composite nanomaterials demonstrate much stronger light absorbance, narrower bandgap, and lower recombination rate of photogenerated electron–hole pairs than both bare TiO2 microspheres and pure AgBr nanoparticles, which endue it with much enhanced photocatalytic activity. The as-prepared TiO2/AgBr photocatalyst exhibits excellent photocatalytic degradation performance towards methylene blue (MB) under visible light irradiation, and 92% MB could be degraded in 90 min, which is much higher than that of bare TiO2 (11%) and pure AgBr (52%). TiO2/AgBr core/shell microsphere photocatalyst also demonstrates good reusability, and the photocatalytic activity has no obvious decrease after five cycles. This study may provide a new insight into the design and synthesis of visible light photocatalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.V. Kamat, J. Phys. Chem. C 111, 2834–2860 (2007)

    CAS  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    CAS  Google Scholar 

  3. P.V. Kamat, Chem. Rev. 93, 267–300 (1993)

    CAS  Google Scholar 

  4. M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, J. Zhao, Angew. Chem. Int. Ed. 48, 6197–6200 (2009)

    Google Scholar 

  5. Y.B. Zhuang, H.Y. Song, G. Li, Y.J. Xu, Mater. Lett. 64, 2491–2493 (2010)

    CAS  Google Scholar 

  6. Y.J. Xu, Y. Zhuang, X. Fu, J. Phys. Chem. C 114, 2669–2676 (2010)

    CAS  Google Scholar 

  7. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735–758 (1995)

    CAS  Google Scholar 

  8. P.D. Cozzoli, M.L. Curri, A. Agostiano, Chem. Commun. 41, 3186–3188 (2005)

    Google Scholar 

  9. M. Tahir, B. Tahir, N.A.S. Amin, Appl. Catal. B 204, 548–560 (2017)

    CAS  Google Scholar 

  10. W.Q. Gao, X.F. Zhang, X.W. Su, F.L. Wang, Z. Liu, B.S. Liu, J. Zhang, H. Liu, Y.H. Song, Chem. Eng. J. 346, 77–84 (2018)

    CAS  Google Scholar 

  11. X.Z. Fu, W.A. Zeltner, M.A. Anderson, Appl. Catal. B 6, 209–224 (1995)

    CAS  Google Scholar 

  12. L. Zang, W. Macyk, C. Lange, W.F. Maier, C. Antonius, D. Meissner, H. Kisch, Chem. Eur. J. 6, 379–384 (2000)

    CAS  Google Scholar 

  13. D. Dvoranova, V. Brezova, M. Mazur, M.A. Malati, Appl. Catal. B 37, 91–105 (2002)

    CAS  Google Scholar 

  14. X.F. Liu, Z.P. Xing, Y. Zhang, Z.Z. Li, X.Y. Wu, S.Y. Tan, X.J. Yu, Q. Zhu, W. Zhou, Appl. Catal. B 201, 119–127 (2017)

    CAS  Google Scholar 

  15. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Tage, Science 293, 269–271 (2001)

    CAS  Google Scholar 

  16. W.H. Deng, S.B. Ning, Q.Y. Lin, H.L. Zhang, T.H. Zhou, H.X. Lin, J.J. Long, Q. Lin, X.X. Wang, Colloids Surf. B 144, 196–202 (2016)

    CAS  Google Scholar 

  17. Y.J. Yin, T. Li, F. Fan, C.Y. Zhao, C.X. Wang, Appl. Surf. Sci. 283, 482–489 (2013)

    CAS  Google Scholar 

  18. H. Fujii, K. Inata, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Sci. 36, 527–532 (2001)

    CAS  Google Scholar 

  19. J. Gao, J.Z. Sun, H.Y. Li, J. Hong, M. Wang, J. Mater. Chem. 14, 1203–1206 (2004)

    Google Scholar 

  20. Y.L. Zhao, C.R. Tao, G.P. Wei, L.H. Li, C.X. Liu, H.J. Su, Nanoscale 8, 5313–5326 (2016)

    CAS  Google Scholar 

  21. S. Khanchandani, S. Kumar, A.K. Ganguli, A.C.S. Sustain, Chem. Eng. 4, 1487–1499 (2016)

    CAS  Google Scholar 

  22. M. Zhang, C.C. Chen, W.H. Ma, J.C. Zhao, Angew. Chem. Int. Ed. 47, 9730–9733 (2008)

    CAS  Google Scholar 

  23. P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Angew. Chem. Int. Ed. 47, 7931–7933 (2008)

    CAS  Google Scholar 

  24. P. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, H. Jin, Y. Dai, Z.Y. Wang, J.Y. Wei, J. Zhan, S.Y. Wang, J.P. Wang, M.H. Whangbo, Chem. Eur. J. 15, 1821–1824 (2009)

    CAS  Google Scholar 

  25. P. Wang, B.B. Huang, Q.Q. Zhang, X.Y. Zhang, X.Y. Qin, Y. Dai, J. Zhan, J.X. Yu, H.X. Liu, Z.Z. Lou, Chem. Eur. J. 16, 10042–10047 (2010)

    CAS  Google Scholar 

  26. P. Wang, B.B. Huang, Y. Dai, M.H. Whangbo, Phys. Chem. Chem. Phys. 14, 9813–9825 (2012)

    CAS  Google Scholar 

  27. C.H. An, S. Peng, Y.G. Sun, Adv. Mater. 22, 2570–2574 (2010)

    CAS  Google Scholar 

  28. G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong, Chemosphere 76, 1185–1191 (2009)

    CAS  Google Scholar 

  29. T. Zhou, Y.G. Xu, H. Xu, H.F. Wang, Z.L. Da, S.Q. Huang, H.Y. Ji, H.M. Li, Cem. Int. 40, 9293–9301 (2014)

    CAS  Google Scholar 

  30. B.Z. Tian, R.F. Dong, J.M. Zhang, S.Y. Bao, Appl. Catal. B 158–159, 76–84 (2014)

    Google Scholar 

  31. J.G. Yu, G.P. Dai, B.B. Huang, J. Phys. Chem. C 113, 16394–16401 (2009)

    CAS  Google Scholar 

  32. F. Fu, Y. Zhang, L. Yan, Y.F. Wang, X.M. Gao, J. Mater. Sci.: Mater. Electron. 28, 691–696 (2017)

    CAS  Google Scholar 

  33. J.L. Sun, J.T. Dai, R. Liu, X.W. Yang, J. Chen, Res. Chem. Intermed. 46, 149–164 (2020)

    CAS  Google Scholar 

  34. M. Sboui, S. Bouattour, M. Gruttadauria, G. Marci, L.F. Liotta, S. Boufi, Nanomaterials 10, 470 (2020)

    CAS  Google Scholar 

  35. X.Z. Liang, P. Wang, M.M. Li, Q.Q. Zhang, Z.Y. Wang, Y. Dai, X.Y. Zhang, Y.Y. Liu, M.H. Whangbo, B.B. Huang, Appl. Catal. B 220, 356–361 (2018)

    CAS  Google Scholar 

  36. Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, Appl. Catal. B 106, 445–452 (2011)

    CAS  Google Scholar 

  37. C. Hu, Y.H. Lan, J.H. Qu, X.X. Hu, A.M. Wang, J. Phys. Chem. B 110, 4066–4072 (2006)

    CAS  Google Scholar 

  38. M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, J. Am. Chem. Soc. 129, 9552–9553 (2007)

    CAS  Google Scholar 

  39. W.Q. Wu, Y.F. Xu, H.S. Rao, C.Y. Su, D.B. Kuang, Nanoscale 5, 4362–4369 (2013)

    CAS  Google Scholar 

  40. S.M. Liu, D.L. Zhu, J.L. Zhu, Q. Yang, H.J. Wu, J. Environ. Sci. 60, 43–52 (2017)

    Google Scholar 

  41. H.B. Cao, P.F. Du, L.X. Song, J. Xiong, J.J. Yang, T.H. Xing, X. Liu, R.R. Wu, M.C. Wang, X.L. Shao, Mater. Res. Bull. 48, 4673–4678 (2013)

    CAS  Google Scholar 

  42. Y.M. Xia, Z.M. He, J.B. Su, S.Q. Zhu, B. Tang, J. Electron. Mater. 49, 3259–3268 (2020)

    CAS  Google Scholar 

  43. X.Y. Deng, H.X. Zhang, R.N. Guo, X.W. Cheng, Q.F. Cheng, Appl. Surf. Sci. 441, 420–428 (2018)

    CAS  Google Scholar 

  44. X.L. Wang, H.Y. Yin, Q.L. Nie, W.W. Wu, Y. Zhang, Q.L. Yuan, Mater. Chem. Phys. 185, 143–151 (2017)

    CAS  Google Scholar 

  45. M.J. Zhang, Y.X. Chen, B.J. Chen, Y.S. Zhang, L. Lin, X.W. Han, P. Zou, G.T. Wang, J. Zeng, M.J. Zhao, New J. Chem. 43, 5088–5098 (2019)

    CAS  Google Scholar 

  46. L. Yang, F.Y. Ye, P. Liu, F.Z. Wang, Photochem. Photobiol. 92, 800–807 (2016)

    CAS  Google Scholar 

  47. N. Sedaghati, A. Habibi-Yangjeh, M. Pirhashemi, S. Vadivel, J. Photochem. Photobiol. A 384, 112066 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Sichuan Science and Technology Program (2018GZ0463) and the National Natural Science Foundation of China (No. 51072124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Wen, X. Hierarchical TiO2/AgBr core/shell microspheres with enhanced visible light photocatalytic activity. J Mater Sci: Mater Electron 31, 20984–20995 (2020). https://doi.org/10.1007/s10854-020-04612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04612-z

Navigation