Skip to main content

Advertisement

Log in

A double-functional carbon material as a supercapacitor electrode and hydrogen production: Cu-doped tea factory waste catalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, our main aim is to show that the first synthesized metal-doped tea factory waste (TFW) catalyst can be used in both hydrogen production and supercapacitor application. In this context, TFW catalyst doped with copper (Cu) (TFW-Cu) was synthesized for methanolysis of NaBH4 and supercapacitor measurement. In the presence of four different parameters (metal type, metal amount, carbonization temperature, and carbonization time), methanolysis experiments of NaBH4 were performed and the catalyst with the maximum hydrogen production rate (HPR) was determined. As a result, it was determined that the 30% Cu-doped TFW (TFW-30%Cu) catalyst had a maximum HPR at a carbonization temperature of 300 °C and a carbonization time of 60 min compared to other substances. As a result of the methanolysis experiments performed in the presence of TFW-30%Cu catalyst, the maximum HPR and activation energy were determined as 9475 mL (min.g)−1 and 13.02 kJ mol−1, respectively. In supercapacitor application, the capacitance of the electrodes in the presence of TFW-30%Cu was calculated as 7–19.9 F.(g)−1. Thus, it is expected that the synthesized catalyst will make a promising contribution in both energy storage and energy production areas—especially for distributed generation systems operating in national networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.A. Barreto, Fossil fuels, alternative energy and economic growth. Econ. Model. 75, 196–220 (2018)

    Article  Google Scholar 

  2. T.S. Uyar, D. Beşikci, Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities. Int. J. Hydrog. Energy 42(4), 2453–2456 (2017)

    Article  CAS  Google Scholar 

  3. B.P. Tarasov, P.V. Fursikov, A.A. Volodin, M.S. Bocharnikov, Y.Y. Shimkus, A.M. Kashin, V.A. Yartys, S. Chidziva, S. Pasupathi, M.V. Lototskyy, Metal hydride hydrogen storage and compression systems for energy storage technologies. Int. J. Hydrog. Energy 46, 13647 (2020)

    Article  Google Scholar 

  4. B.P. Tarasov, M.S. Bocharnikov, Y.B. Yanenko, P.V. Fursikov, K.B. Minko, M.V. Lototskyy, Metal hydride hydrogen compressors for energy storage systems: layout features and results of long-term tests. J. Phys. 2(2), 024005 (2020)

    CAS  Google Scholar 

  5. G. Bozkurt, A. Özer, A.B. Yurtcan, Hydrogen generation from sodium borohydride with Ni and Co based catalysts supported on Co3O4. Int. J. Hydrog. Energy 43(49), 22205–22214 (2018)

    Article  CAS  Google Scholar 

  6. V. Simagina, A. Ozerova, O. Komova, G. Odegova, D. Kellerman, R. Fursenko, E. Odintsov, O. Netskina, Cobalt boride catalysts for small-scale energy application. Catal. Today 242, 221–229 (2015)

    Article  CAS  Google Scholar 

  7. D. Call, B.E. Logan, Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42(9), 3401–3406 (2008)

    Article  CAS  Google Scholar 

  8. P.A. Selembo, M.D. Merrill, B.E. Logan, Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrog. Energy 35(2), 428–437 (2010)

    Article  CAS  Google Scholar 

  9. Y.-X. Huang, X.-W. Liu, X.-F. Sun, G.-P. Sheng, Y.-Y. Zhang, G.-M. Yan, S.-G. Wang, A.-W. Xu, H.-Q. Yu, A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. Int. J. Hydrog. Energy 36(4), 2773–2776 (2011)

    Article  CAS  Google Scholar 

  10. H. Yuan, J. Li, C. Yuan, Z. He, Facile synthesis of MoS2@ CNT as an effective catalyst for hydrogen production in microbial electrolysis cells. ChemElectroChem 1(11), 1828–1833 (2014)

    Article  CAS  Google Scholar 

  11. A.K. Avci, Z.I. Önsan, Compr. Energy Syst. 2018, 475–523 (2018)

    Article  Google Scholar 

  12. M. Kaya, M. Bekiroğullari, C. Saka, Highly efficient CoB catalyst using a support material based on Spirulina microalgal strain treated with ZnCl2 for hydrogen generation via sodium borohydride methanolysis. Int. J. Energy Res. 43(9), 4243–4252 (2019)

    Article  CAS  Google Scholar 

  13. S.K. Bhattacharya, R.R. Tummala, Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates. J. Mater. Sci. 11(3), 253–268 (2000)

    CAS  Google Scholar 

  14. J. Liang, H. Zhao, L. Yue, G. Fan, T. Li, S. Lu, G. Chen, S. Gao, A.M. Asiri, X. Sun, Recent advances in electrospun nanofibers for supercapacitors. J. Mater. Chem. A 8(33), 16747–16789 (2020)

    Article  CAS  Google Scholar 

  15. J. Liu, Y.-G. Xu, L.-B. Kong, Cleverly embedded CoS2/NiS2 on two-dimensional graphene nanosheets as high-performance anode material for improved sodium ion batteries and sodium ion capacitors. J. Mater. Sci. 31(12), 9946 (2020)

    CAS  Google Scholar 

  16. S. Vijayalakshmi, E. Elaiyappillai, P.M. Johnson, I.S. Lydia, Multifunctional magnetic CoFe2O4 nanoparticles for the photocatalytic discoloration of aqueous methyl violet dye and energy storage applications. J. Mater. Sci. 31, 10738–10749 (2020)

    CAS  Google Scholar 

  17. C. Duran, D. Ozdes, A. Gundogdu, M. Imamoglu, H.B. Senturk, Tea-industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium. Anal. Chim. Acta 688(1), 75–83 (2011)

    Article  CAS  Google Scholar 

  18. C.-H. Weng, Y.-T. Lin, D.-Y. Hong, Y.C. Sharma, S.-C. Chen, K. Tripathi, Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecol. Eng. 67, 127–133 (2014)

    Article  Google Scholar 

  19. A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, M. Imamoglu, Y. Onal, Physicochemical characteristics of a novel activated carbon produced from tea industry waste. J. Anal. Appl. Pyrolysis 104, 249–259 (2013)

    Article  CAS  Google Scholar 

  20. C. Saka, M. Kaya, M. Bekiroğullari, Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts. Int. J. Hydrog. Energy 45(3), 1959–1968 (2020)

    Article  CAS  Google Scholar 

  21. K. Mustafa, M. Bekirogullari, Investigation of hydrogen production from sodium borohydride methanolysis in the presence of Al2O3/spirulina platensis supported Co catalyst. Avrupa Bil. Tekn. Der. 16, 69–76 (2019)

    Google Scholar 

  22. R. Fernandes, N. Patel, A. Miotello, M. Filippi, Studies on catalytic behavior of Co–Ni–B in hydrogen production by hydrolysis of NaBH4. J. Mole. Catal. A 298(1–2), 1–6 (2009)

    Article  CAS  Google Scholar 

  23. M. Kaya, NiB loaded acetic acid treated microalgae strain (Spirulina Platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis. Energy Sources Part A 41(20), 2549–2560 (2019)

    Article  CAS  Google Scholar 

  24. A. Pinto, D. Falcao, R. Silva, C. Rangel, Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors. Int. J. Hydrog. Energy. 31(10), 1341–1347 (2006)

    Article  CAS  Google Scholar 

  25. M. Bekirogullari, Catalytic activities of non-noble metal catalysts (CuB, FeB, and NiB) with C. vulgaris microalgal strain support modified by using phosphoric acid for hydrogen generation from sodium borohydride methanolysis. Int. J. Hydrog. Energy 44(29), 14981–14991 (2019)

    Article  CAS  Google Scholar 

  26. Y. Wei, W. Meng, Y. Wang, Y. Gao, K. Qi, K. Zhang, Fast hydrogen generation from NABH4 hydrolysis catalyzed by nanostructured CoeNieB catalysts. Int. J. Hydrog. Energy 42(6072), e6079 (2017)

    Google Scholar 

  27. M. Bekiroğullari, M. Kaya, C. Saka, Highly efficient Co-B catalysts with Chlorella vulgaris microalgal strain modified using hydrochloric acid as a new support material for hydrogen production from methanolysis of sodium borohydride. Int. J. Hydrog. Energy 44(14), 7262–7275 (2019)

    Article  Google Scholar 

  28. Y. Wei, R. Wang, L. Meng, Y. Wang, G. Li, S. Xin, X. Zhao, K. Zhang, Hydrogen generation from alkaline NaBH4 solution using a dandelion-like Co–Mo–B catalyst supported on carbon cloth. Int. J. Hydrog. Energy 42(15), 9945–9951 (2017)

    Article  CAS  Google Scholar 

  29. M. Bekirogullari, Hydrogen production from sodium borohydride by ZnCl2 treated defatted spent coffee ground catalyst. Int. J. Hydrog. Energy. 45(16), 9733–9743 (2020)

    Article  CAS  Google Scholar 

  30. E. Fangaj, A.A. Ali, F. Güngör, S. Bektaş, A.A. Ceyhan, The use of metallurgical waste sludge as a catalyst in hydrogen production from sodium borohydride. Int. J. Hydrog. Energy 45, 13322 (2020)

    Article  CAS  Google Scholar 

  31. X. Zhu, S. Yu, K. Xu, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu, H. Chen, Z. Shen, Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 181, 36–45 (2018)

    Article  CAS  Google Scholar 

  32. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci. 4(8), 2826–2830 (2011)

    Article  CAS  Google Scholar 

  33. F.R.M.S. Raj, N.V. Jaya, G. Boopathi, D. Kalpana, A. Pandurangan, S-doped activated mesoporous carbon derived from the Borassus flabellifer flower as active electrodes for supercapacitors. Mater. Chem. Phys. 240, 122151 (2020)

    Article  Google Scholar 

  34. Z. Song, D. Zhu, D. Xue, J. Yan, X. Chai, W. Xiong, Z. Wang, Y. Lv, T. Cao, M. Liu, Nitrogen-enriched hollow porous carbon nanospheres with tailored morphology and microstructure for all-solid-state symmetric supercapacitors. ACS Appl. Energy Mater. 1(8), 4293–4303 (2018)

    Article  CAS  Google Scholar 

  35. M. Bolat, C. Yavuz, M. Kaya, Investigation of dual-functionalized novel carbon supported Sn material from corn stalk for energy storage and fuel cell systems on distributed generations. J. Mater. Sci. 2021, 1–15 (2021)

    Google Scholar 

  36. I.I.G. Inal, M. Akdemir, M. Kaya, Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: a dual functional material. Int. J. Hydrog. Energy 46, 21534 (2021)

    Article  CAS  Google Scholar 

  37. M. Akdemir, T. Avci Hansu, A. Caglar, M. Kaya, H. Demir Kivrak, Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage 3, e243 (2021)

    Article  CAS  Google Scholar 

  38. S. Özarslan, M.R. Atelge, M. Kaya, S. Ünalan, Production of dual functional carbon material from biomass treated with NaOH for supercapacitor and catalyst. Energy Storage (2021). https://doi.org/10.1002/est2.257

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support to The Unit of Scientific Research Project Coordination (BAP) at Erciyes University, Kayseri. Project ID: FDK-2020-10493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özarslan, S., Atelge, M.R., Kıvrak, H.D. et al. A double-functional carbon material as a supercapacitor electrode and hydrogen production: Cu-doped tea factory waste catalyst. J Mater Sci: Mater Electron 32, 28909–28918 (2021). https://doi.org/10.1007/s10854-021-07275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07275-6

Navigation