Skip to main content

Advertisement

Log in

Biomass-based metal-free catalyst as a promising supercapacitor electrode for energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present study, biomass doped H3PO4-Cat, named as STW-H3PO4-Cat, was used as a catalyst in the methanolysis of sodium borohydride (NaBH4). Spent tea waste (STW) was used for the first time in this study as biomass. The generated existing catalyst was also employed as an active supercapacitor material, demonstrating its dual function. To identify the most active catalyst in the methanolysis of sodium borohydride, the catalyst was functionalized in different H3PO4 concentrations (1–7 M), and different annealing temperatures (200–500 °C) and different annealing times (20–80 min). Optimum parameters were determined as 7 M H3PO4, 400 °C, and 40 min. The maximum hydrogen production (HPR) value and the activation energy (Ea) were determined as 76,640 mL min−1 g cat−1 and 12.03 kJ mol−1. When the catalyst was investigated in terms of the supercapacitor, the electrode's capacitance at 1 A/g current intensity was found to be 158 F/g utilizing the charge–discharge curve. The catalyst with optimum conditions was structurally and morphologically characterized by Fourier Transform Infrared (FTIR), x-ray diffraction (XRD), and scanning electron microscope (SEM) measurements, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. D.E. Karakaş et al., A dual functional material: Spirulina platensis waste-supported Pd-Co catalyst as a novel promising supercapacitor electrode. Fuel 304, 121334 (2021)

    Article  CAS  Google Scholar 

  2. P.C. Hallenbeck, D. Ghosh, Improvements in fermentative biological hydrogen production through metabolic engineering. J. Environ. Manag. 95, S360–S364 (2012)

    Article  CAS  Google Scholar 

  3. B.-C. Xie et al., Decomposing CO2 emission changes in thermal power sector: a modified production-theoretical approach. J. Environ. Manag. 281, 111887 (2021)

    Article  CAS  Google Scholar 

  4. N. Sahiner, S.B. Sengel, Quaternized polymeric microgels as metal free catalyst for H2 production from the methanolysis of sodium borohydride. J. Power Sources 336, 27–34 (2016)

    Article  CAS  Google Scholar 

  5. A.G. Stern, A new sustainable hydrogen clean energy paradigm. Int. J. Hydrogen Energy 43(9), 4244–4255 (2018)

    Article  CAS  Google Scholar 

  6. A.E. Farrell, D.W. Keith, J.J. Corbett, A strategy for introducing hydrogen into transportation. Energy Policy 31(13), 1357–1367 (2003)

    Article  Google Scholar 

  7. O. Ozay et al., Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. Int. J. Hydrogen Energy 36(3), 1998–2006 (2011)

    Article  CAS  Google Scholar 

  8. S. Özarslan et al., Production of dual functional carbon material from biomass treated with NaOH for supercapacitor and catalyst. Energy Storage 3, e257 (2021)

    Article  CAS  Google Scholar 

  9. H.-B. Dai et al., Amorphous cobalt–boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. J. Power Sources 177(1), 17–23 (2008)

    Article  CAS  Google Scholar 

  10. S. Demirci, N. Sahiner, Superior reusability of metal catalysts prepared within poly(ethylene imine) microgels for H2 production from NaBH4 hydrolysis. Fuel Process. Technol. 127, 88–96 (2014)

    Article  CAS  Google Scholar 

  11. W. Cai et al., Remarkable irreversible and reversible dehydrogenation of LiBH4 by doping with nanosized cobalt metalloid compounds. Int. J. Hydrogen Energy 38(8), 3304–3312 (2013)

    Article  CAS  Google Scholar 

  12. D. Xu et al., Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4. Fuel Process. Technol. 92(8), 1606–1610 (2011)

    Article  CAS  Google Scholar 

  13. U.B. Demirci et al., Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell. Fuel Cells 10(3), 335–350 (2010)

    Article  CAS  Google Scholar 

  14. N. Patel, R. Fernandes, A. Miotello, Hydrogen generation by hydrolysis of NaBH4 with efficient Co–P–B catalyst: a kinetic study. J. Power Sources 188(2), 411–420 (2009)

    Article  CAS  Google Scholar 

  15. N. Sahiner, S. Demirci, Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis. Appl. Catal. B 202, 199–206 (2017)

    Article  CAS  Google Scholar 

  16. M. Can et al., Natural celluloses as catalysts in dehydrogenation of NaBH4 in methanol for H2 production. ACS Omega 5(25), 15519–15528 (2020)

    Article  CAS  Google Scholar 

  17. E. Fangaj, A.A. Ceyhan, Apricot Kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 45, 17104 (2020)

    Article  CAS  Google Scholar 

  18. M. Kaya, Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. Int. J. Hydrogen Energy 45(23), 12731–12742 (2020)

    Article  CAS  Google Scholar 

  19. M. Kaya, Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. Int. J. Hydrogen Energy 45(23), 12743–12754 (2020)

    Article  CAS  Google Scholar 

  20. C. Saka, M. Kaya, M. Bekiroğullari, Spirulina microalgal strain as efficient a metal-free catalyst to generate hydrogen via methanolysis of sodium borohydride. Int. J. Energy Res. 44(1), 402–410 (2020)

    Article  CAS  Google Scholar 

  21. M. Akdemir, D.E. Karakaş, M. Kaya, Synthesis of a dual-functionalized carbon-based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pd-supported pomegranate peel. Energy Storage 2021, e284 (2021)

    Google Scholar 

  22. M. Akdemir et al., Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage 2021, e243 (2021)

    Google Scholar 

  23. D.E. Karakaş et al., Defatted spent coffee grounds-supported cobalt catalyst as a promising supercapacitor electrode for hydrogen production and energy storage. Clean Technol. Environ. Policy 2021, 1–11 (2021)

    Google Scholar 

  24. M. Kaya, NiB loaded acetic acid treated microalgae strain (Spirulina platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis. Energy Sources A 41(20), 2549–2560 (2019)

    Article  CAS  Google Scholar 

  25. C. Saka, M. Kaya, M. Bekiroğullari, Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts. Int. J. Hydrogen Energy 45(3), 1959–1968 (2020)

    Article  CAS  Google Scholar 

  26. D. Elma Karakaş, New bifunctional carbon material of metal-free pomegranate peel catalyst and supercapacitor for highly efficient hydrogen production and energy storage. Int J Energy Res 46, 1789 (2021)

    Article  CAS  Google Scholar 

  27. S.J. Ki et al., Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma. J. Environ. Manag. 203, 880–887 (2017)

    Article  CAS  Google Scholar 

  28. A. Pandolfo, A. Hollenkamp, Electrochemical capacitors–scientific fundamentals and technological applications. J Power Sources 157, 11–27 (2006)

    Article  CAS  Google Scholar 

  29. N.R. Reddy et al., Photocatalytic hydrogen production from dye contaminated water and electrochemical supercapacitors using carbon nanohorns and TiO2 nanoflower heterogeneous catalysts. J. Environ. Manag. 277, 111433 (2020)

    Article  CAS  Google Scholar 

  30. H. Sun et al., Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials. ACS Appl. Mater. Interfaces. 5(6), 2261–2268 (2013)

    Article  CAS  Google Scholar 

  31. A.V. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO (OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap. 72(6), 1407–1415 (2018)

    Article  CAS  Google Scholar 

  32. A. Thakur, B. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge. J. Mater. Sci.: Mater. Electron. 28(16), 11755–11761 (2017)

    CAS  Google Scholar 

  33. R. Ambare, B. Lokhande, Ru incorporation enhanced electrochemical performance of spray deposited Mn:Co3O4 nano-composite: electrochemical approach. J. Anal. Appl. Pyrol. 132, 245–253 (2018)

    Article  CAS  Google Scholar 

  34. R. Ambare et al., Sprayed bismuth oxide interconnected nanoplate supercapacitor electrode materials. Appl. Surf. Sci. 453, 214–219 (2018)

    Article  CAS  Google Scholar 

  35. T. Ghadge et al., Controlled synthesis, structural, morphological and electrochemical study of Cu (OH) 2@ Cu flexible thin film electrodes prepared via aqueous–non-aqueous routes. J. Mater. Sci.: Mater. Electron. 32(7), 9018–9031 (2021)

    CAS  Google Scholar 

  36. A. Thakur, B. Lokhande, Morphological modification for optimum electrochemical performance of highly pristine polypyrrole flexible electrodes, via SILAR immersion time and fabrication of solid state symmetric device. Port. Electrochim. Acta 36(6), 377–392 (2018)

    Article  CAS  Google Scholar 

  37. A. Thakur, B. Lokhande, Effect of the molar concentration of pyrrole monomer on the rate of polymerization, growth and hence the electrochemical behavior of highly pristine PPy flexible electrodes. Heliyon 5(11), e02909 (2019)

    Article  CAS  Google Scholar 

  38. M. Reina et al., Boosting electric double layer capacitance in laser-induced graphene-based supercapacitors. Adv. Sustain. Syst. 6(1), 2100228 (2022)

    Article  CAS  Google Scholar 

  39. J. Huang et al., Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors. J. Mater. Chem. A 5(47), 24775–24781 (2017)

    Article  CAS  Google Scholar 

  40. S. Qu et al., Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J. Alloys Compd. 751, 107–116 (2018)

    Article  CAS  Google Scholar 

  41. A. Jain, R. Balasubramanian, M. Srinivasan, Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem. Eng. J. 283, 789–805 (2016)

    Article  CAS  Google Scholar 

  42. W. Tang et al., Natural biomass-derived carbons for electrochemical energy storage. Mater. Res. Bull. 88, 234–241 (2017)

    Article  CAS  Google Scholar 

  43. V. Subramanian et al., Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111(20), 7527–7531 (2007)

    Article  CAS  Google Scholar 

  44. X.-L. Wu et al., Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4), 3589–3597 (2013)

    Article  CAS  Google Scholar 

  45. T.E. Rufford et al., Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem. Commun. 10(10), 1594–1597 (2008)

    Article  CAS  Google Scholar 

  46. Q. Zhang et al., Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10(5), 2427–2437 (2018)

    Article  CAS  Google Scholar 

  47. S. Özarslan et al., A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: a dual functional material. Fuel 305, 121578 (2021)

    Article  CAS  Google Scholar 

  48. M. Bolat, C. Yavuz, M. Kaya, Investigation of dual-functionalized novel carbon supported Sn material from corn stalk for energy storage and fuel cell systems on distributed generations. J. Mater. Sci. 2021, 1–15 (2021)

    Google Scholar 

  49. I.I.G. Inal, M. Akdemir, M. Kaya, Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: a dual functional material. Int. J. Hydrogen Energy 46, 21534 (2021)

    Article  CAS  Google Scholar 

  50. D.E. Karakaş et al., Defatted spent coffee grounds-supported cobalt catalyst as a promising supercapacitor electrode for hydrogen production and energy storage. Clean Technol. Environ. Policy (2021). https://doi.org/10.1007/s10098-021-02164-2

    Article  Google Scholar 

  51. S. Özarslan et al., Production of dual functional carbon material from biomass treated with NaOH for supercapacitor and catalyst. Energy Storage. 3, e257 (2021)

    Article  CAS  Google Scholar 

  52. M. Akdemir et al., Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage 1, e243 (2021)

    Google Scholar 

  53. R. Xie, B. Qu, K. Hu, Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends. Polym. Degrad. Stab. 72(2), 313–321 (2001)

    Article  CAS  Google Scholar 

  54. S. Bourbigot et al., Carbonization mechanisms resulting from intumescence-part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 33(3), 283–294 (1995)

    Article  CAS  Google Scholar 

  55. A.M. Puziy et al., Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 45(10), 1941–1950 (2007)

    Article  CAS  Google Scholar 

  56. F. Tomul et al., Efficient removal of anti-inflammatory from solution by Fe-containing activated carbon: adsorption kinetics, isotherms, and thermodynamics. J. Environ. Manag. 238, 296–306 (2019)

    Article  CAS  Google Scholar 

  57. H.N. Tran, H.-P. Chao, S.-J. You, Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations. Adsorpt. Sci. Technol. 36(1–2), 95–113 (2018)

    Article  CAS  Google Scholar 

  58. P. Panneerselvam, N. Morad, K.A. Tan, Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. J. Hazard. Mater. 186(1), 160–168 (2011)

    Article  CAS  Google Scholar 

  59. Ö. Şahin et al., Preparation of high surface area activated carbon from Elaeagnus angustifolia seeds by chemical activation with ZnCl2 in one-step treatment and its iodine adsorption. Sep. Sci. Technol. 50(6), 886–891 (2015)

    Article  CAS  Google Scholar 

  60. A.A. Ceyhan et al., A novel thermal process for activated carbon production from the vetch biomass with air at low temperature by two-stage procedure. J. Anal. Appl. Pyrol. 104, 170–175 (2013)

    Article  CAS  Google Scholar 

  61. D.E. Karakaş, A novel cost-effective catalyst from orange peel waste protonated with phosphoric acid for hydrogen generation from methanolysis of NaBH4. Int. J. Hydrogen Energy 47, 12231–12239 (2021)

    Article  CAS  Google Scholar 

  62. N. Sahiner, A.O. Yasar, A new application for colloidal silica particles: natural, environmentally friendly, low-cost, and reusable catalyst material for H2 production from NaBH4 methanolysis. Ind. Eng. Chem. Res. 55(43), 11245–11252 (2016)

    Article  CAS  Google Scholar 

  63. M. Kaya, A.A. Ceyhan, Ö. Şahin, Effects of different temperatures and additives on the metastable zone width precipitation kinetics of NaBO2. Russ. J. Phys. Chem. A 88(3), 402–408 (2014)

    Article  CAS  Google Scholar 

  64. M. Akdemir, Electrochemical performance of Quercus infectoria as a supercapacitor carbon electrode material. Int. J. Energy Res. 46(6), 7722–7731 (2022)

    Article  CAS  Google Scholar 

  65. Q. Cheng et al., Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49(9), 2917–2925 (2011)

    Article  CAS  Google Scholar 

  66. X. Yan, Y. Yu, X. Yang, Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Adv. 4(48), 24986–24990 (2014)

    Article  CAS  Google Scholar 

  67. J. Gamby et al., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001)

    Article  CAS  Google Scholar 

  68. X. Zhu et al., Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 181, 36–45 (2018)

    Article  CAS  Google Scholar 

  69. X. Song et al., Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl. Surf. Sci. 487, 189–197 (2019)

    Article  CAS  Google Scholar 

  70. J. Xia et al., Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem. 20(3), 694–700 (2018)

    Article  CAS  Google Scholar 

  71. A. Bello et al., Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv. 6(3), 1800–1809 (2016)

    Article  CAS  Google Scholar 

  72. N. Manyala et al., Coniferous pine biomass: a novel insight into sustainable carbon materials for supercapacitors electrode. Mater. Chem. Phys. 182, 139–147 (2016)

    Article  CAS  Google Scholar 

  73. M. Karnan et al., Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl. Mater. Interfaces. 8(51), 35191–35202 (2016)

    Article  CAS  Google Scholar 

  74. X. Wang et al., Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC Adv. 7(38), 23859–23865 (2017)

    Article  CAS  Google Scholar 

  75. W. Zhang et al., Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 128, 618–625 (2017)

    Article  CAS  Google Scholar 

  76. M. Chen et al., Preparation of activated carbon from cotton stalk and its application in supercapacitor. J. Solid State Electrochem. 17(4), 1005–1012 (2013)

    Article  CAS  Google Scholar 

  77. S. Yang et al., Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147, 540–549 (2019)

    Article  CAS  Google Scholar 

  78. Y.S. Yun et al., Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl. Mater. Interfaces. 7(6), 3684–3690 (2015)

    Article  CAS  Google Scholar 

  79. Y. Luan et al., Porous carbon@ MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density. J. Electroanal. Chem. 763, 90–96 (2016)

    Article  CAS  Google Scholar 

  80. J. Yu et al., Porous carbons produced by the pyrolysis of green onion leaves and their capacitive behavior. New Carbon Mater. 31(5), 475–484 (2016)

    Article  CAS  Google Scholar 

  81. I.I.G. Inal, Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl. Surf. Sci. 514, 145895 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DEK: Experiment, supervision and review. MA: conceptualization, investigation, and visualization. GTI: conceptualization, investigation, visualization, writing—review and editing. HDK: supervision and review. SH: review and editing. MK: conceptualization, investigation, visualization, writing—review and editing.

Corresponding authors

Correspondence to Sabit Horoz or Mustafa Kaya.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

The authors declare that they have no conflict of interest.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakaş, D.E., Akdemir, M., Imanova, G.T. et al. Biomass-based metal-free catalyst as a promising supercapacitor electrode for energy storage. J Mater Sci: Mater Electron 33, 18111–18123 (2022). https://doi.org/10.1007/s10854-022-08669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08669-w

Navigation