Skip to main content
Log in

Charge extraction enhancement in hybrid solar cells using n-ZnO/p-NiO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recent studies have shown that the addition of inorganic metal oxide nanoparticles (NPs) can enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). In this paper influences of mixing ZnO (n-type) and NiO (p-type) NPs to the photoactive layer of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester (P3HT:PC61BM) were discussed. It is interesting to note that the optimized device with ZnO:NiO NPs achieved a PCE of 4.37% compared to the bare-doped NPs cell (3.56%) under light illumination intensity of 100 mW/cm2. Further investigations based on charge extraction by linearly increasing voltage (CELIV) technique have been carried out to explain the possible reason for PCE enhancement. The improved performance is attributed to the enhanced charge carrier’s transportation and reduced exciton (electron/hole pair) annihilation. As evidence by CELIV measurements, the PCE degrades with further addition of ZnO:NiO NPs concentration to the photoactive layer due to deep-trap states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474 (1992)

    Article  CAS  Google Scholar 

  2. Y. Fu, Z. Lv, S. Hou, H. Wu, D. Wang, C. Zhang, Z. Chu, X. Cai, X. Fan, Z.L. Wang, D. Zou, Energy Environ. Sci. 4, 3379 (2011)

    Article  CAS  Google Scholar 

  3. Y.Y. Lin, T.H. Chu, S.S. Li, C.H. Chuang, C.H. Chang, W.F. Su, C.P. Chang, M.W. Chu, C.W. Chen, J. Am. Chem. Soc. 131, 3644 (2009)

    Article  CAS  Google Scholar 

  4. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

    Article  CAS  Google Scholar 

  5. A.J. Moulé, K. Meerholz, Adv. Func. Mater. 19, 3028 (2009)

    Article  Google Scholar 

  6. P. Schilinsky, C. Waldauf, C.J. Brabec, Appl. Phys. Lett. 81, 3885 (2002)

    Article  CAS  Google Scholar 

  7. E. Zhou, J. Cong, Q. Wei, K. Tajima, C. Yang, K. Hashimoto, Angew. Chem. Int. Ed. 50, 2799 (2011)

    Article  CAS  Google Scholar 

  8. C.G. Shuttle, N.D. Treat, J.D. Douglas, J.M.J. Fréchet, M.L. Chabinyc, Adv. Energy Mater. 2, 111 (2012)

    Article  CAS  Google Scholar 

  9. C.Y. Kwong, W.C.H. Choy, A.B. Djurišić, P.C. Chui, K.W. Cheng, W.K. Chan, Nanotechnology 15, 1156 (2004)

    Article  CAS  Google Scholar 

  10. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)

    Article  CAS  Google Scholar 

  11. A.P. Wanninayake, S. Gunashekar, S. Li, B.C. Church, N. Abu-Zahra, Semicond. Sci. Technol. 30, 064004 (2015)

    Article  Google Scholar 

  12. S.Y. Park, H.O. Seo, K.D. Kim, W.H. Shim, J. Heo, S. Cho, Y.D. Kim, K.H. Lee, D.C. Lim, J. Phys. Chem. C 116, 15348 (2012)

    Article  CAS  Google Scholar 

  13. C.P. Chen, Y.D. Chen, S.C. Chuang, Adv. Mater. 23, 3859 (2011)

    CAS  Google Scholar 

  14. D.M. Fabian, S. Ardo, J. Mater. Chem. A 4, 6837 (2016)

    Article  CAS  Google Scholar 

  15. T. Muller, T.A. Ramashia, D.E. Motaung, F. Cummings, G. Malgas, C. Oliphant, C. Arendse, Phys. Status Solidi A Appl. Mater. Sci. 213, 1915 (2016)

    Article  CAS  Google Scholar 

  16. Y. Li, L. Mao, L. Yu, X. Li, J. Zhang, Nanotechnology 31, 125101 (2020)

    Article  CAS  Google Scholar 

  17. J. Lorrmann, B.H. Badada, O. Inganäs, V. Dyakonov, C. Deibel, J. Appl. Phys. 108, 113705 (2010)

    Article  Google Scholar 

  18. G. Juška, N. Nekrašas, V. Valentinavičius, P. Meredith, A. Pivrikas, Phys. Rev. B Condens. Matter Mater. Phys. 84, 1 (2011)

    Article  Google Scholar 

  19. U.W. Pradeep, M. Villani, D. Calestani, L. Cristofolini, S. Iannotta, A. Zappettini, N. Coppede, Nanotechnology 28, 035403 (2017)

    Article  CAS  Google Scholar 

  20. N. Sekine, C.H. Chou, W.L. Kwan, Y. Yang, Org. Electron. Phys. Mater. Appl. 10, 1473 (2009)

    CAS  Google Scholar 

  21. B.R. Lee, E.D. Jung, Y.S. Nam, M. Jung, J.S. Park, S. Lee, H. Choi, S.J. Ko, N.R. Shin, Y.K. Kim, S.O. Kim, J.Y. Kim, H.J. Shin, S. Cho, M.H. Song, Adv. Mater. 26, 494 (2014)

    Article  CAS  Google Scholar 

  22. E. Salim, S.R. Bobbara, A. Oraby, J.M. Nunzi, Synth. Met. 252, 21 (2019)

    Article  CAS  Google Scholar 

  23. Z. Fu, X. Zhang, H. Zhang, Y. Li, H. Zhou, Y. Zhang, Chin. J. Chem. 39, 381 (2021)

    Article  CAS  Google Scholar 

  24. M. Imran, M. Ikram, S. Dilpazir, M. Nafees, S. Ali, J. Geng, Appl. Nanosci. 7, 747 (2017)

    Article  CAS  Google Scholar 

  25. R.C.I. MacKenzie, T. Kirchartz, G.F.A. Dibb, J. Nelson, J. Phys. Chem. C 115, 9806 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by a grant from Mansoura University (Grant No. MU-SCI-20-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Salim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, E. Charge extraction enhancement in hybrid solar cells using n-ZnO/p-NiO nanoparticles. J Mater Sci: Mater Electron 32, 28830–28839 (2021). https://doi.org/10.1007/s10854-021-07267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07267-6

Navigation