Skip to main content

Advertisement

Log in

Determination of arsenic(III) in water using gold nanorods-modified electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the gold nanorods (GNR) material were successfully synthesized and stabilized by cetyltrimethylammonium bromide (GNR-CTAB) and poly(sodium-4-styrenesulfonate) (GNR-PSS). The result shows that the effect of stabilizers CTAB and PSS are quite uniform. The GNR-PSS solution revealed great stability after 168 h of continuous shaking. The structure of nanoparticles is characterized by UV–Vis spectrum and transmission microscope (TEM). The glassy carbon electrode (GCE) was modified by dropping the GNR material (GNR/GCE) with the nanosized particles onto its surface whose electrochemical properties were studied. Moreover, the determination of As(III) by using electrode was carried out in turn through cyclic voltammetry (CV) and differential pulse anodic stripping voltammetry (DP-ASV). In the result, the modified GNR/GCE electrode exhibited excellent response toward As(III) by using the DP-ASV method, compares to employ the bare GCE, with a limit of detection (LOD) 0.72 ppb and the linear concentration of As(III) between 0.90 and 38.99 ppb. The modified electrode had durable operation with noninterference of Fe(III), Cd(II), Cu(II), Fe(II), Zn(II), and Pb(II) ions. It is worth noting in this report that the products of As(III) analysis process in real sample solutions are reliable compared to the GF-AAS method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. R.A. Yokel, S.M. Lasley, D.C. Dorman, The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment. J. Toxicol. Environ. Health B 9, 63–85 (2006)

    Article  CAS  Google Scholar 

  2. S. Cinti, S. Politi, D. Moscone, G. Palleschi, F. Arduini, Stripping analysis of As(III) by means of screen-printed electrodes modified with gold nanoparticles and carbon black nanocomposite. Electroanalysis 26, 931–939 (2014)

    Article  CAS  Google Scholar 

  3. B.K. Mandal, K.T. Suzuki, Arsenic round the world: a review. Talanta 58, 201–235 (2002)

    Article  CAS  Google Scholar 

  4. A.H. Smith, E.O. Lingas, M. Rahman, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 78, 1093–1103 (2000)

    CAS  Google Scholar 

  5. A. Mukherjee, M.K. Sengupta, M.A. Hossain, S. Ahamed, B. Das, B. Nayak, D. Lodh, M.M. Rahman, D. Chakraborti, Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J. Health Popul. Nutr. 24(2), 142–163 (2006)

    Google Scholar 

  6. E. Majid, S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem. 78, 762–769 (2006)

    Article  CAS  Google Scholar 

  7. R. MacDonald, Providing clean water: lessons from Bangladesh: large parts of the world face an unwelcome choice between arsenic and micro-organisms. BMJ 322(7287), 626–627 (2001)

    Article  CAS  Google Scholar 

  8. L.M. Camacho, M. Gutiérrez, M.T. Alarcón-Herrera, M. de Lourdes Villalba, S. Deng, Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 83, 211–225 (2011)

    Article  CAS  Google Scholar 

  9. B.M. Sonkoue, P.M.S. Tchekwagep, C.P. Nanseu-Njiki, E. Ngameni, Electrochemical determination of arsenic using silver nanoparticles. Electroanalysis 30, 2738–2743 (2018)

    Article  CAS  Google Scholar 

  10. F.J. Pereira, M.D. Vázquez, L. Debán, A.J. Aller, Cyclic voltammetry of arsenic-doped cysteine-capped ceramic nanoparticles. Electrochim. Acta 109, 125–135 (2013)

    Article  CAS  Google Scholar 

  11. H. Rekhi, S. Rani, N. Sharma, A.K. Malik, A review on recent applications of high-performance liquid chromatography in metal determination and speciation analysis. Crit. Rev. Anal. Chem. 47, 524–537 (2017)

    Article  CAS  Google Scholar 

  12. W.A. Maher, M.J. Ellwood, F. Krikowa, G. Raber, S. Foster, Measurement of arsenic species in environmental, biological fluids and food samples by HPLC–ICPMS and HPLC-HG-AFS. J. Anal. At. Spectrom. 30, 2129–2183 (2015)

    Article  CAS  Google Scholar 

  13. S. Kempahanumakkagari, A. Deep, K.-H. Kim, S.K. Kailasa, H.-O. Yoon, Nanomaterial-based electrochemical sensors for arsenic—a review. Biosens. Bioelectron. 95, 106–116 (2017)

    Article  CAS  Google Scholar 

  14. G. Melinte, O. Hosu, M. Lettieri, C. Cristea, G. Marrazza, Electrochemical fingerprint of arsenic(III) by using hybrid nanocomposite-based platforms. Sensors (Basel) 19, 1–13 (2019)

    Article  CAS  Google Scholar 

  15. S.H. Shin, H.G. Hong, Anodic stripping voltammetric detection of arsenic(III) at platinum–iron(III) nanoparticle modified carbon nanotube on glassy carbon electrode. Bull. Korean Chem. Soc. 31, 3077–3083 (2010)

    Article  CAS  Google Scholar 

  16. A.F. Villadangos, E. Ordóñez, M.I. Muñoz, I.M. Pastrana, M. Fiuza, J.A. Gil, L.M. Mateos, A.J. Aller, Retention of arsenate using genetically modified coryneform bacteria and determination of arsenic in solid samples by ICP-MS. Talanta 80, 1421–1427 (2010)

    Article  CAS  Google Scholar 

  17. O. Yehezkeli, R. Tel-Vered, S. Raichlin, I. Willner, Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5, 2385–2391 (2011)

    Article  CAS  Google Scholar 

  18. Y. Yang, A.M. Asiri, D. Du, Y. Lin, Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139, 3055–3060 (2014)

    Article  CAS  Google Scholar 

  19. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, P. Mulvaney, Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005)

    Article  CAS  Google Scholar 

  20. J.T. Holland, C. Lau, S. Brozik, P. Atanassov, S. Banta, Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J. Am. Chem. Soc. 133, 19262–19265 (2011)

    Article  CAS  Google Scholar 

  21. R. Devasenathipathy, V. Mani, S.-M. Chen, D. Arulraj, V.S. Vasantha, Highly stable and sensitive amperometric sensor for the determination of trace level hydrazine at cross linked pectin stabilized gold nanoparticles decorated graphene nanosheets. Electrochim. Acta 135, 260–269 (2014)

    Article  CAS  Google Scholar 

  22. R. Devasenathipathy, C. Karuppiah, S.-M. Chen, V. Mani, V.S. Vasantha, S. Ramaraj, Highly selective determination of cysteine using a composite prepared from multiwalled carbon nanotubes and gold nanoparticles stabilized with calcium crosslinked pectin. Microchim. Acta 182, 727–735 (2015)

    Article  CAS  Google Scholar 

  23. M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  24. H. Liao, J.H. Hafner, Gold nanorod bioconjugates. Chem. Mater. 17, 4636–4641 (2005)

    Article  CAS  Google Scholar 

  25. D. Pissuwan, S.M. Valenzuela, M.B. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–67 (2006)

    Article  CAS  Google Scholar 

  26. S.E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Gold nanocages for biomedical applications. Adv. Mater. 19, 3177–3184 (2007)

    Article  CAS  Google Scholar 

  27. M. Alagiri, P. Rameshkumar, A. Pandikumar, Gold nanorod-based electrochemical sensing of small biomolecules: a review. Microchim. Acta 184, 3069–3092 (2017)

    Article  CAS  Google Scholar 

  28. N. Yusoff, A. Pandikumar, R. Ramaraj, H.N. Lim, N.M. Huang, Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim. Acta 182, 2091–2114 (2015)

    Article  CAS  Google Scholar 

  29. A.M. Alkilany, L.B. Thompson, S.P. Boulos, P.N. Sisco, C.J. Murphy, Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 64, 190–199 (2012)

    Article  CAS  Google Scholar 

  30. H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)

    Article  CAS  Google Scholar 

  31. A.R. Marlinda, S. Sagadevan, N. Yusoff, A. Pandikumar, N.M. Huang, O. Akbarzadeh, M.R. Johan, Gold nanorods-coated reduced graphene oxide as a modified electrode for the electrochemical sensory detection of NADH. J. Alloys Compd. 847, 156552 (2020)

    Article  CAS  Google Scholar 

  32. J. Narang, N. Malhotra, G. Singh, C.S. Pundir, Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosens. Bioelectron. 66, 332–337 (2015)

    Article  CAS  Google Scholar 

  33. Z. Jia, J. Liu, Y. Shen, Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid. Electrochem. Commun. 9, 2739–2743 (2007)

    Article  CAS  Google Scholar 

  34. M. Govindasamy, S. Manavalan, S.-M. Chen, U. Rajaji, T.-W. Chen, F.M.A. Al-Hemaid, M.A. Ali, M.S. Elshikh, Determination of neurotransmitter in biological and drug samples using gold nanorods decorated f-MWCNTs modified electrode. J. Electrochem. Soc. 165, B370–B377 (2018)

    Article  CAS  Google Scholar 

  35. T. Placido, G. Aragay, J. Pons, R. Comparelli, M.L. Curri, A. Merkoçi, Ion-directed assembly of gold nanorods: a strategy for mercury detection. ACS Appl. Mater. Interfaces 5, 1084–1092 (2013)

    Article  CAS  Google Scholar 

  36. J.M. Liu, H.F. Wang, X.P. Yan, A gold nanorod based colorimetric probe for the rapid and selective detection of Cu2+ ions. Analyst 136, 3904–3910 (2011)

    Article  CAS  Google Scholar 

  37. A.Z. Mirza, H. Shamshad, Fabrication and characterization of doxorubicin functionalized PSS coated gold nanorod. Arab. J. Chem. 12, 146–150 (2019)

    Article  CAS  Google Scholar 

  38. Z. Wu, Y. Liang, L. Cao, Q. Guo, S. Jiang, F. Mao, J. Sheng, Q. Xiao, High-yield synthesis of monodisperse gold nanorods with a tunable plasmon wavelength using 3-aminophenol as the reducing agent. Nanoscale 11, 22890–22898 (2019)

    Article  CAS  Google Scholar 

  39. A.P. Leonov, J. Zheng, J.D. Clogston, S.T. Stern, A.K. Patri, A. Wei, Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano 2, 2481–2488 (2008)

    Article  CAS  Google Scholar 

  40. X. Han, X. Fang, A. Shi, J. Wang, Y. Zhang, An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform. Anal. Biochem. 443, 117–123 (2013)

    Article  CAS  Google Scholar 

  41. S. Kundu, S. Panigrahi, S. Praharaj, S. Basu, S.K. Ghosh, A. Pal, T. Pal, Anisotropic growth of gold clusters to gold nanocubes under UV irradiation. Nanotechnology 18(7), 075712 (2007)

    Article  CAS  Google Scholar 

  42. Z. Singh, I. Singh, CTAB surfactant assisted and high pH nano-formulations of CuO nanoparticles pose greater cytotoxic and genotoxic effects. Sci. Rep. 9, 1–13 (2019)

    Google Scholar 

  43. A.M. Silva, C. Martins-Gomes, T.E. Coutinho, J.F. Fangueiro, E. Sanchez-Lopez, T.N. Pashirova, T. Andreani, E.B. Souto, Soft cationic nanoparticles for drug delivery: production and cytotoxicity of solid lipid nanoparticles (SLNs), Appl. Sci. 9(20), 4438 (2019)

  44. N. Timmer, D. Gore, D. Sanders, T. Gouin, S.T.J. Droge, Toxicity mitigation and bioaccessibility of the cationic surfactant cetyltrimethylammonium bromide in a sorbent-modified biodegradation study. Chemosphere 222, 461–468 (2019)

    Article  CAS  Google Scholar 

  45. Y. Lan, H. Luo, X. Ren, Y. Wang, Y. Liu, Anodic stripping voltammetric determination of arsenic(III) using a glassy carbon electrode modified with gold–palladium bimetallic nanoparticles. Microchim. Acta 178, 153–161 (2012)

    Article  CAS  Google Scholar 

  46. R.T. Kachoosangi, G.G. Wildgoose, R.G. Compton, Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal. Chim. Acta 618, 54–60 (2008)

    Article  CAS  Google Scholar 

  47. J. Soleymani, M. Hasanzadeh, N. Shadjou, M.K. Jafari, J.V. Gharamaleki, M. Yadollahi, A. Jouyban, A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C 61, 638–650 (2016)

    Article  CAS  Google Scholar 

  48. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Electroanalysis 101, 19–28 (1979)

    Article  CAS  Google Scholar 

  49. I. Taverniers, M. De Loose, E. Van Bockstaele, Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal. Chem. 23, 535–552 (2004)

    Article  CAS  Google Scholar 

  50. H. Zhang, X. Bo, L. Guo, Electrochemical preparation of porous graphene and its electrochemical application in the simultaneous determination of hydroquinone, catechol, and resorcinol. Sens. Actuators B 220, 919–926 (2015)

    Article  CAS  Google Scholar 

  51. F. Xie, X. Lin, X. Wu, Z. Xie, Solid phase extraction of lead(II), copper(II), cadmium(II) and nickel(II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta 74, 836–843 (2008)

    Article  CAS  Google Scholar 

  52. J.H. Hwang, P. Pathak, X. Wang, K.L. Rodriguez, J. Park, H.J. Cho, W.H. Lee, A novel Fe-chitosan-coated carbon electrode sensor for in situ As(III) detection in mining wastewater and soil leachate. Sens. Actuators B 294, 89–97 (2019)

    Article  CAS  Google Scholar 

  53. D. Lu, C. Sullivan, E.M. Brack, C.P. Drew, P. Kurup, Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar-modified screen-printed carbon electrodes and modified Britton-Robinson buffer. Anal. Bioanal. Chem. 412, 4113–4125 (2020)

    Article  CAS  Google Scholar 

  54. N.-U.-A. Babar, K.S. Joya, M.A. Tayyab, M.N. Ashiq, M. Sohail, Highly sensitive and selective detection of arsenic using electrogenerated nanotextured gold assemblage. ACS Omega 4, 13645–13657 (2019)

    Article  CAS  Google Scholar 

  55. J. Lalmalsawmi, Z. Zirlianngura, D. Tiwari, S.-M. Lee, Low cost, highly sensitive and selective electrochemical detection of arsenic(III) using silane grafted based nanocomposite. Environ. Eng. Res. 25, 579–587 (2020)

    Article  Google Scholar 

  56. S.-H. Wen, Y. Wang, Y.-H. Yuan, R.-P. Liang, J.-D. Qiu, Electrochemical sensor for arsenite detection using graphene oxide assisted generation of Prussian blue nanoparticles as enhanced signal label. Anal. Chim. Acta 1002, 82–89 (2018)

    Article  CAS  Google Scholar 

  57. M. Yang, X. Chen, T.J. Jiang, Z. Guo, J.H. Liu, X.J. Huang, Electrochemical detection of trace arsenic(III) by nanocomposite of nanorod-like α-MnO2 decorated with ∼ 5 nm Au nanoparticles: considering the change of arsenic speciation. Anal. Chem. 88, 9720–9728 (2016)

    Article  CAS  Google Scholar 

  58. M.B. Gumpu, M. Veerapandian, U.M. Krishnan, J.B.B. Rayappan, Electrochemical sensing platform for the determination of arsenite and arsenate using electroactive nanocomposite electrode. Chem. Eng. J. 351, 319–327 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao Anh Quang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, ., Nguyen, D.M. & Toan, T.T.T. Determination of arsenic(III) in water using gold nanorods-modified electrode. J Mater Sci: Mater Electron 32, 27962–27974 (2021). https://doi.org/10.1007/s10854-021-07177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07177-7

Navigation