Skip to main content

Advertisement

Log in

Piezoelectric and structural properties of bismuth sodium potassium titanate lead-free ceramics for energy harvesting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of piezoelectric ceramics with high energy conversion efficiency is of decisive importance for the requirements of the advanced energy harvesting devices toward miniaturization and integration. Lead titanate-zirconate (PZT) piezoceramics are the most widely used energy harvesting (EH) materials due to their excellent piezoelectric properties. However, the presence of more than 60% lead in the PZT composition is a serious threat to human health and the environment. Consequently, greater efforts being made to develop lead-free alternatives to PZT-based materials. Here, we propose the Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT) lead-free piezoceramics as a good candidate for the replacement of toxic lead compounds for energy harvesting applications. For that, we have carried out a systematic study of the voltage generation of BNKT-based piezoceramics for (EH) purposes. Specifically, the obtained piezoelectric charge coefficients (d33 = 129 pC/N and d31 = − 12.8 pC/N) and maximum generated output voltage (19.9 V/g) values reveal the good ferro-piezoelectric properties and potential technological applications for energy harvesting of the BNKT–based lead-free piezoceramics. Finally, we consider that the design of new lead-free piezoceramics with superior property coefficients and functionalities, such as the BNKT-based piezoceramics, should be seriously considered as candidates for the replacement of the current toxic lead-based compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Chiba, M. Waki, T. Wada, Y. Hirakawa, K. Masuda, T. Ikoma, Appl. Energy 104, 497 (2013)

    Article  CAS  Google Scholar 

  2. D.M. Sun, K. Wang, X.J. Zhang, Y.N. Guo, Y. Xu, L.M. Qiu, Appl. Energy 106, 377 (2013)

    Article  Google Scholar 

  3. A. Delnavaz, J. Voix, Smart Mater. Str. 23, 105020 (2014)

    Article  Google Scholar 

  4. Y.C. Shu, I.C. Lien, J. Micromech. Microeng. 16, 2429 (2006)

    Article  Google Scholar 

  5. W.S. Kang, J.H. Koh, J. Eur. Ceram. Soc. 35, 2057 (2015)

    Article  CAS  Google Scholar 

  6. G. Lee, D.J. Shin, Y.H. Kwon, S.J. Jeong, J.H. Koh, Ceram. Int. 42, 14355 (2016)

    Article  CAS  Google Scholar 

  7. S.P. Machado, M. Febbo, F. Rubio-Marcos, L.A. Ramajo, M.S. Castro, Smart Mater. Str. 24, 115011 (2015)

    Article  Google Scholar 

  8. I.-T. Seo, C.-H. Choi, D. Song, M.-S. Jang, B.-Y. Kim, S. Nahm, Y.-S. Kim, T.-H. Sung, H.-C. Song, J. Am. Ceram. Soc. 96, 1024 (2013)

    Article  CAS  Google Scholar 

  9. Y.B. Jeon, R. Sood, J.H. Jeong, S.G. Kim, Sensors Actuators A: Phys. 122, 16 (2005)

    Article  CAS  Google Scholar 

  10. G. Poulin, E. Sarraute, F. Costa, Sensors Actuators A: Phys. 116, 461 (2004)

    Article  CAS  Google Scholar 

  11. E. Ringgaard, T. Wurlitzer, J. Eur. Ceram. Soc. 25, 2701 (2005)

    Article  CAS  Google Scholar 

  12. M. Kosec, B. Malič, A. Benčan, T. Rojac, Piezoelectric and Acoustic Materials for Transducer Applications (Springer, US, 2008), pp. 81–102

    Book  Google Scholar 

  13. K.A. Razak, C.J. Yip, S. Sreekantan, J. Alloy. Compd. 509, 2936 (2011)

    Article  Google Scholar 

  14. B. Jiang, T.M. Raeder, D.Y. Lin, T. Grande, S.M. Selbach, Chem. Mater. 30, 2631 (2018)

    Article  CAS  Google Scholar 

  15. K. Wang, J.F. Li, J. Adv. Ceram. 1, 24 (2012)

    Article  CAS  Google Scholar 

  16. B. Parija, T. Badapanda, S.K.K. Rout, L.S.S. Cavalcante, S. Panigrahi, E. Longo, N.C.C. Batista, T.P.P. Sinha, Ceram. Int. 39, 4877 (2013)

    Article  CAS  Google Scholar 

  17. A. Ullah, R.A. Malik, A. Ullah, D.S. Lee, S.J. Jeong, J.S. Lee, I.W. Kim, C.W. Ahn, J. Eur. Ceram. Soc. 34, 29 (2014)

    Article  CAS  Google Scholar 

  18. B. Wang, L. Luo, F. Ni, P. Du, W. Li, H. Chen, J. Alloy. Compd. 526, 79 (2012)

    Article  CAS  Google Scholar 

  19. A. Deng, J. Wu, J. Materiom. 6, 286 (2020)

    Article  Google Scholar 

  20. M. Febbo, S.P. Machado, J. Sound Vib. 332, 1465 (2013)

    Article  Google Scholar 

  21. S.P. Machado, M. Febbo, S. Bellizzi, Mecánica Comput. 23, 2185 (2014)

    Google Scholar 

  22. H. Ishii, H. Nagata, T. Takenaka, Japan. J. Appl. Phys. Part 1: Reg. Papers Short Notes Rev. Papers 40, 5660 (2001)

    Article  Google Scholar 

  23. J.E. Garcia, F. Rubio-Marcos, J. Appl. Phys. 127, 131102 (2020)

    Article  CAS  Google Scholar 

  24. G.O. Jones, J. Kreisel, P.A. Thomas, Powder Diffr. 17, 301 (2002)

    Article  CAS  Google Scholar 

  25. J. Camargo, L. Ramajo, F. Rubio-Marcos, M. Castro, Adv. Mater. Res. 975, 3 (2014)

    Article  Google Scholar 

  26. C. Wang, T. Xia, X. Lou, Ceram. Int. 44, 7378 (2018)

    Article  CAS  Google Scholar 

  27. J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello, G. Lucazeau, J. Phys.: Condens. Matter 12, 3267 (2000)

    CAS  Google Scholar 

  28. A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phys. 10, 1367 (2010)

    Article  Google Scholar 

  29. A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Algueró, H. Amorín, J. Phys. D: Appl. Phys. 47, 055304 (2014)

    Article  CAS  Google Scholar 

  30. H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Japan. J. Appl. Phys. Part 1: Reg. Papers Short Notes Rev. Papers 42, 7401 (2003)

    Article  CAS  Google Scholar 

  31. L. Dhakar, H. Liu, F.E.H. Tay, C. Lee, Sensors Actuators A: Phys. 199, 344 (2013)

    Article  CAS  Google Scholar 

  32. J. Wu, H. Shi, T. Zhao, Y. Yu, S. Dong, Adv. Func. Mater. 26, 7186 (2016)

    Article  CAS  Google Scholar 

  33. Y. Oh, J. Noh, J. Yoo, J. Kang, L. Hwang, J. Hong, IEEE Trans. Ultrason. Ferroelectr. Frequency Control 58, 1860 (2011)

    Article  Google Scholar 

  34. X. Yan, M. Zheng, S. Sun, M. Zhu, Y. Hou, Dalton Trans. 47, 9257 (2018)

    Article  CAS  Google Scholar 

  35. Z. Yang, S. Zhou, J. Zu, D. Inman, Joule 2, 642 (2018)

    Article  CAS  Google Scholar 

  36. S.S. Won, M. Kawahara, C.W. Ahn, J. Lee, J. Lee, C.K. Jeong, A.I. Kingon, S.H. Kim, Adv. Electr. Mater. 6, 1900950 (2020)

    Article  CAS  Google Scholar 

  37. K. Batra, N. Sinha, B. Kumar, J. Mater. Sci.: Mater. Electron. 30, 6157 (2019)

    CAS  Google Scholar 

  38. D.H. Lim, T.K. Song, D.S. Lee, S.J. Jeong, M.S. Kim, J.S. Song, J. Korean Phys. Soc. 60, 240 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the ANPCyT (Argentina, PICT 2014-1314), CONICET (Argentina), UNMdP (Argentina), AEI (Spanish Government, MAT2017-86450-C4-1-R) projects. F.R-M is indebted to MINECO for a ‘Ramon y Cajal’ contract (Ref: RyC-2015-18626), which is co-financed by the European Social Fund. F.R-M also acknowledges support from a 2018 Leonardo Grant for Researchers and Cultural Creators (BBVA Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Camargo.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, J., Osinaga, S., Febbo, M. et al. Piezoelectric and structural properties of bismuth sodium potassium titanate lead-free ceramics for energy harvesting. J Mater Sci: Mater Electron 32, 19117–19125 (2021). https://doi.org/10.1007/s10854-021-06430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06430-3

Navigation