Skip to main content
Log in

Preparation and Property Enhancement of Poly(Vinylidene Fluoride) (PVDF)/Lead Zirconate Titanate (PZT) Composite Piezoelectric Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, two methods (magnetic stirring and mechanical ball milling) were used to modify the surface of lead zirconate titanate (PZT) particles. Then, poly(vinylidene fluoride) (PVDF)/PZT piezoelectric films were prepared by extrusion casting and solvent casting. We investigated the mechanical, dielectric, ferroelectric, and piezoelectric properties, as well as the breakdown strength of the PVDF/PZT films. We found that adding PZT particles improved the mechanical stability of the films under variable temperature conditions. Modification by the UP-105 titanate coupling reagent further improved the combination and dispersion of PZT@105 particles in PVDF. The films prepared by extrusion casting showed improved properties in terms of density, dielectric constant, breakdown strength, and piezoelectric coefficient. The piezoelectric coefficient (d33) of the PVDF/PZT@105 composite film (with 25 wt.% PZT@105) prepared by extrusion casting reached 35 pC/N, and the electromechanical strain ratio was almost 1.6%, which is higher than that of piezoelectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, and G. Yang, Nano Energy 56, 662 (2019).

    Article  CAS  Google Scholar 

  2. X. Huang, B. Sun, Y. Zhu, S. Li, and P. Jiang, Prog. Mater. Sci. 100, 187 (2019).

    Article  CAS  Google Scholar 

  3. F. E. Bouharras, M. Raihane, and B. Ameduri, Prog. Mater. Sci. 113, 100670 (2020).

    Article  CAS  Google Scholar 

  4. L. Jin, S. Ma, W. Deng, C. Yan, T. Yang, X. Chu, G. Tian, D. Xiong, J. Lu, and W. Yang, Nano Energy 50, 632 (2018).

    Article  CAS  Google Scholar 

  5. K.Y. Cho, H. Park, H.-J. Kim, X.H. Do, C.M. Koo, S.S. Hwang, H.G. Yoon, and K.-Y. Baek, Compos. Sci. Technol. 157, 21 (2018).

    Article  CAS  Google Scholar 

  6. S. Sharafkhani, and M. Kokabi, Compos. Sci. Technol. 200, 108425 (2007).

    Article  Google Scholar 

  7. V.F. Cardoso, T. Knoll, T. Velten, L. Rebouta, P.M. Mendes, S. Lanceros-Méndez, and G. Minas, RSC Adv. 4, 4292 (2014).

    Article  CAS  Google Scholar 

  8. S.O. Catarino, L.R. Silva, P.M. Mendes, J.M. Miranda, S. Lanceros-Mendez, and G. Minas, Sens. Actuators B Chem. 205, 206 (2014).

    Article  CAS  Google Scholar 

  9. C. Ribeiro, C.M. Costa, D.M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Goncalves, V.F. Cardoso, and S. Lanceros-Mendez, Nat. Protoc. 13, 681 (2018).

    Article  CAS  Google Scholar 

  10. J.H. Bae and S.H. Chang, Funct Compos. Struct. 1, 012003 (2019).

    Article  CAS  Google Scholar 

  11. W. Xia and Z. Zhang, IET Nanodielectrics 1, 17 (2018).

    Article  Google Scholar 

  12. K. Shi, B. Sun, X. Huang, and P. Jiang, Nano Energy 52, 153 (2018).

    Article  CAS  Google Scholar 

  13. J. Chen, Y. Wang, Q. Yuan, X. Xu, Y. Niu, Q. Wang, and H. Wang, Nano Energy 54, 288 (2018).

    Article  CAS  Google Scholar 

  14. Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen, Q. Chi, L. Liu, G. Li, Y. Cui, X. Wang, Z. Dang, and Q. Lei, Nano Energy 56, 138 (2019).

    Article  CAS  Google Scholar 

  15. L. Zhang, Z. Liu, X. Lu, G. Yang, X. Zhang, and Z.Y. Cheng, Nano Energy 26, 550 (2016).

    Article  CAS  Google Scholar 

  16. T. Soulestin, V. Ladmiral, F.D. Dos Santos, and B. Améduri, Prog. Polym. Sci. 72, 16 (2017).

    Article  CAS  Google Scholar 

  17. J. Fu, Y. Hou, X. Gao, M. Zheng, and M. Zhu Nano Energy 52, 391 (2018).

    Article  CAS  Google Scholar 

  18. K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai, X. Wang, and Y. Huang, Nano Energy 51, 513 (2018).

    Article  CAS  Google Scholar 

  19. S. Luo, J. Yu, S. Yu, R. Sun, L. Cao, W.-H. Liao, and C.-P. Wong, Adv. Energy Mater. 9, 1803204 (2018).

    Article  Google Scholar 

  20. Y. Xie, J. Wang, Y. Yu, W. Jiang, and Z. Zhang, Appl. Surf. Sci. 440, 1150 (2018).

    Article  CAS  Google Scholar 

  21. Z.H. Shen, J.J. Wang, Y. Lin, C.W. Nan, L.Q. Chen, and Y. Shen, Adv. Mater. 30, 1704380 (2017).

    Article  Google Scholar 

  22. Y. Jiang, X. Zhang, Z. Shen, X. Li, J. Yan, B.W. Li, and C.W. Nan, Adv. Funct. Mater. 30, 1906112 (2019).

    Article  Google Scholar 

  23. S. Revathi, L.J. Kennedy, S.K.K. Basha, and R. Padmanabhan, J. Nanosci. Nanotechnol. 18, 4953 (2018).

    Article  CAS  Google Scholar 

  24. L. Lu, W. Ding, J. Liu, and B. Yang, Nano Energy 78, 105251 (2020).

    Article  CAS  Google Scholar 

  25. V. Tiwari and G. Srivastava, Ceram. Int. 41, 8008 (2015).

    Article  CAS  Google Scholar 

  26. P.-H. Cazorla, O. Fuchs, M. Cochet, S. Maubert, G. Le Rhun, Y. Fouillet, and E. Defay, Sens. Actuators A Phys. 250, 35 (2016).

    Article  CAS  Google Scholar 

  27. J. Pei, Z. Zhao, X. Li, H. Liu, and R. Li, Mater. Express 7, 180 (2017).

    Article  CAS  Google Scholar 

  28. R.L.B. de Freitas, W.K. Sakamoto, L.P.S. Freitas, F. Castro, A.P. Lima Filho, C. Kitano, and A.A. de Carvalho, IEEE Sens. J. 18, 5067 (2018).

    Article  Google Scholar 

  29. Q. Wu, D.-J. Xie, Y.-D. Zhang, Z.-M. Jia, and H.-Z. Zhang, Compos. B Eng. 156, 148 (2019).

    Article  CAS  Google Scholar 

  30. M.-S. Zheng, Y.-T. Zheng, J.-W. Zha, Y. Yang, P. Han, Y.-Q. Wen, and Z.-M. Dang, Nano Energy 48, 144 (2018).

    Article  CAS  Google Scholar 

  31. S.Y. LiangZhang, S. Chen, D. Wang, B.-Z. Han, and Z. Dang, Compos. Sci. Technol. 110, 126 (2015).

    Article  Google Scholar 

  32. T. Furukawa, K. Fujino, and E. Fukada, Jpn. J. Appl. Phys. 15, 2119 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2019-YB-005) and the National Natural Science Foundation of China (No. 51472189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanyao Zhu.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Sun, H. & Zhu, Q. Preparation and Property Enhancement of Poly(Vinylidene Fluoride) (PVDF)/Lead Zirconate Titanate (PZT) Composite Piezoelectric Films. J. Electron. Mater. 50, 6426–6437 (2021). https://doi.org/10.1007/s11664-021-09172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09172-4

Keywords

Navigation