Skip to main content
Log in

Effect of copper pretreatment on optical and electrical properties of camphor-based graphene by chemical vapour deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline copper (Cu) foil is widely used as catalytic substrate for graphene growth in chemical vapor deposition (CVD) technique. The surface properties of the Cu foil strongly affect the growth behavior and final quality of CVD-grown graphene. The effect of pretreatment of Cu foil using four different solutions (acetone, acetic acid, HCl and HNO3) on the graphene growth held in atmospheric pressure CVD and its subsequent impact on electrical and optical properties are investigated. Natural camphor is used as the solid carbon precursor. The surface characteristics before and after the growth are studied using scanning electron microscopy and atomic force microscopy. The pretreatment conditions of Cu and the growth of graphene from camphor were correlated using Raman spectroscopy, optical and electrical characteristics. Our findings suggest that HCl-pretreated Cu foil exhibited large domain, uniform coverage of the transferred graphene with excellent optical (> 93% at 550 nm) and electrical properties (sheet resistance of 861 ± 40 Ω/sq), with promisingly low RMS value of roughness (38 nm). The pretreatment process improved the quality of graphene by removing the surface impurity particles and surface native oxides. A Schottky junction diode of graphene/n-silicon is fabricated by transferring the graphene to SiO2/Si substrate under dark and illuminated conditions is also demonstrated to establish its potential in micro- and opto-electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electricfield effect in atomically thin carbon films. Science 306(5696), 666 (2004)

    Article  CAS  Google Scholar 

  2. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia et al., Electromechanical resonators from graphene sheets. Science 315(5811), 490 (2007)

    Article  CAS  Google Scholar 

  3. J. Wu, W. Pisula, K. Müllen, Graphenes as potential material for electronics. ChemicalReviews 107(3), 718–747 (2007)

    CAS  Google Scholar 

  4. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsicstrength of monolayer graphene. Science 321(5887), 385 (2008)

    Article  CAS  Google Scholar 

  5. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)

    Article  CAS  Google Scholar 

  6. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju et al., A graphene-based broadband optical modulator. Nature 474, 64 (2011)

    Article  CAS  Google Scholar 

  7. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen et al., Transfer of large-areagraphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)

    Article  CAS  Google Scholar 

  8. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839 (2009)

    Article  CAS  Google Scholar 

  9. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009)

    Article  CAS  Google Scholar 

  10. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312 (2009)

    Article  CAS  Google Scholar 

  11. K.V. Emtsev, F. Speck, T. Seyller, L. Ley, J.D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys. Rev. B 77(15), 155303 (2008)

    Article  Google Scholar 

  12. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270 (2008)

    Article  CAS  Google Scholar 

  13. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution- processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)

    Article  CAS  Google Scholar 

  14. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012)

    Article  Google Scholar 

  15. T.N.D. Alpha, C. Johann, N.P. Tim, B. Carsten, M. Thomas, Structure of epitaxial graphene on Ir(111). New J. Phys. 10(4), 043033 (2008)

    Article  Google Scholar 

  16. M. Qi, Z. Ren, Y. Jiao, Y. Zhou, X. Xu, W. Li et al., Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene. J. Phys. Chem. C 117(27), 14348–14353 (2013)

    Article  CAS  Google Scholar 

  17. L. Zhao, K.T. Rim, H. Zhou, R. He, T.F. Heinz, A. Pinczuk et al., Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun. 151(7), 509–513 (2011)

    Article  CAS  Google Scholar 

  18. X. Dong, P. Wang, W. Fang, C.-Y. Su, Y.-H. Chen, L.-J. Li et al., Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49(11), 3672–3678 (2011)

    Article  CAS  Google Scholar 

  19. A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason et al., Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49(13), 4204–4210 (2011)

    Article  CAS  Google Scholar 

  20. G. Kalita, M. Masahiro, H. Uchida, K. Wakita, M. Umeno, Few layers of graphene as transparent electrode from botanical derivative camphor. Mater. Lett. 64(20), 2180–2183 (2010)

    Article  CAS  Google Scholar 

  21. G. Kalita, K. Wakita, M. Umeno, Monolayer graphene from a green solid precursor. Physica E 43(8), 1490–1493 (2011)

    Article  CAS  Google Scholar 

  22. F. Ravani, K. Papagelis, V. Dracopoulos, J. Parthenios, K.G. Dassios, A. Siokou et al., Graphene production by dissociation of camphor molecules on nickel substrate. Thin Solid Films 527, 31–37 (2013)

    Article  CAS  Google Scholar 

  23. S. Sharma, G. Kalita, M.E. Ayhan, K. Wakita, M. Umeno, M. Tanemura, Synthesis of hexagonal graphene on polycrystalline Cu foil from solid camphor by atmospheric pressure chemical vapor deposition. J. Mater. Sci. 48(20), 7036–7041 (2013)

    Article  CAS  Google Scholar 

  24. S. Sharma, G. Kalita, R. Hirano, Y. Hayashi, M. Tanemura, Influence of gas composition on the formation of graphene domain synthesized from camphor. Mater. Lett. 93, 258–262 (2013)

    Article  CAS  Google Scholar 

  25. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)

    Article  Google Scholar 

  26. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574 (2010)

    Article  CAS  Google Scholar 

  27. G.A. López, E.J. Mittemeijer, The solubility of C in solid Cu. Scripta Mater. 51(1), 1–5 (2004)

    Article  Google Scholar 

  28. X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268–4272 (2009)

    Article  CAS  Google Scholar 

  29. Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443 (2011)

    Article  CAS  Google Scholar 

  30. C. Mattevi, H. Kim, M. Chhowalla, A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21(10), 3324–3334 (2011)

    Article  CAS  Google Scholar 

  31. N. Reckinger, A. Felten, C.N. Santos, B. Hackens, J.-F. Colomer, The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition. Carbon 63, 84–91 (2013)

    Article  CAS  Google Scholar 

  32. K. Soo Min, H. Allen, L. Yi-Hsien, D. Mildred, P. Tomás, K. Ki Kang et al., The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24(36), 365602 (2013)

    Article  Google Scholar 

  33. M.-S. Kim, J.-M. Woo, D.-M. Geum, J.R. Rani, J.-H. Jang, Effect of copper surface pre- treatment on the properties of CVD grown graphene. AIP Adv. 4(12), 127107 (2014)

    Article  Google Scholar 

  34. T.J. Gnanaprakasa, Y. Gu, S.K. Eddy, Z. Han, W.J. Beck, K. Muralidharan et al., The role of copper pretreatment on the morphology of graphene grown by chemical vapor deposition. Microelectron. Eng. 131, 1–7 (2015)

    Article  CAS  Google Scholar 

  35. A. Ibrahim, G. Nadhreen, S. Akhtar, F.M. Kafiah, T. Laoui, Study of the impact of chemical etching on Cu surface morphology, graphene growth and transfer on SiO2/Si substrate. Carbon. 123, 402–414 (2017)

    Article  CAS  Google Scholar 

  36. A.T. Murdock, C.D. van Engers, J. Britton, V. Babenko, S.S. Meysami, H. Bishop et al., Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon. 122, 207–216 (2017)

  37. D. Senyildiz, O.T. Ogurtani, G. Cambaz Buke, The effects of acid pretreatment and surface stresses on the evolution of impurity clusters and graphene formation on Cu foil. Appl. Surf. Sci. 425, 873–878 (2017)

  38. B. Huet, J.-P. Raskin, Role of Cu foil in-situ annealing in controlling the size and thickness of CVD graphene domains. Carbon 129, 270–280 (2018)

    Article  CAS  Google Scholar 

  39. I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos et al., Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54, 58–67 (2013)

    Article  CAS  Google Scholar 

  40. D. Lee, G.D. Kwon, J.H. Kim, E. Moyen, Y.H. Lee, S. Baik et al., Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition. Nanoscale 6(21), 12943–12951 (2014)

    Article  CAS  Google Scholar 

  41. S. Dhingra, J.-F. Hsu, I. Vlassiouk, B. D’Urso, Chemical vapor deposition of graphene onlarge-domain ultra-flat copper. Carbon 69, 188–193 (2014)

    Article  CAS  Google Scholar 

  42. K.L. Chavez, D.W. Hess, A Novel Method of Etching Copper Oxide Using Acetic Acid. Journal of The Electrochemical Society 148(11), G640–G643 (2001)

    Article  CAS  Google Scholar 

  43. Z. Luo, Y. Lu, D.W. Singer, M.E. Berck, L.A. Somers, B.R. Goldsmith et al., Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 23(6), 1441–1447 (2011)

    Article  CAS  Google Scholar 

  44. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009)

    Article  CAS  Google Scholar 

  45. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013)

    Article  CAS  Google Scholar 

  46. H. Chaliyawala, R. Patel, R. Narasimman, A. Ray, Mukhopadhyay, Controlled Island Formation of Large-Area Graphene Sheets by Atmospheric Chemical Vapor Deposition: Role of Natural Camphor. ACS Omega 4, 5: 8758–8766 (2019)

    Article  CAS  Google Scholar 

  47. P. Chamoli, M.K. Das, K.K. Kar, Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film. J. Phys. Chem. Solids 125, 17–25 (2018)

  48. P. Chamoli, M.K. Das, K.K. Kar, Green synthesis of silver-graphene nanocomposite-based transparent conducting film. Physica E 90, 76–84 (2017)

    Article  CAS  Google Scholar 

  49. A. Di Bartolomeo, Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016)

    Article  Google Scholar 

  50. M. Kumar, M. Patel, H.-S. Kim, J. Kim, J. Yi, High-Speed, Self-Biased Broadband Photodetector-Based on a Solution-Processed Ag Nanowire/Si Schottky Junction. ACS Appl. Mater. Interfaces. 9(44), 38824–38831 (2017)

    Article  CAS  Google Scholar 

  51. M. Kobayashi, A. Kinoshita, K. Saraswat, H.S.P. Wong, Y. Nishi, Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect- transistor application. J. Appl. Phys. 105(2), 023702 (2009)

    Article  Google Scholar 

  52. Z. Fute, S. Tao, S. Baoquan, Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application. Nanotechnology 23(19), 194006 (2012)

    Article  Google Scholar 

  53. C.-C. Chen, M. Aykol, C.-C. Chang, A.F.J. Levi, S.B. Cronin, Graphene-silicon schottky diodes. Nano Lett. 11(5), 1863–1867 (2011)

    Article  CAS  Google Scholar 

  54. D. Sinha, J.U. Lee, I deal graphene/silicon Schottky junction diodes. Nano Lett. 14(8), 4660–4664 (2014)

    Article  CAS  Google Scholar 

  55. H. Chaliyawala, N. Aggarwal, Z. Purohit, R. Patel, G. Gupta, A. Jaffre, S. Le Gall, A. Ray, I. Mukhopadhyay, Role of nanowire length on the performance of a self-driven NIR photodetector based on mono/bi-layer graphene (camphor)/Si-nanowire Schottky junction. IOP Nanotechnol. 31, 225208 (2019)

  56. M. Mohammed, Z. Li, J. Cui, T. Chen, Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res. Lett 7, 302 (2012)

    Article  Google Scholar 

  57. D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W.P. Hu, W. Chen, Surface transfer doping-induced, high-performance graphene/silicon schottky junction-based, self- powered photodetector. Small 11(37), 4829–4836 (2015)

    Article  CAS  Google Scholar 

  58. C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, C. Wu, Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett. 99, 133113 (2011)

Download references

Acknowledgements

One of the authors (Dr. R. Narasimman) would like to acknowledge the DST-SERB, New Delhi, India for the award of SERB National Post-Doctoral Fellowship (File Number: PDF/2017/003063 dated: 11/07/2017). The authors are acknowledging IIT, Gandhinagar for AFM facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harsh A. Chaliyawala, Indrajit Mukhopadhyay or Abhijit Ray.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaliyawala, H.A., Narasimman, R., Pati, R.K. et al. Effect of copper pretreatment on optical and electrical properties of camphor-based graphene by chemical vapour deposition. J Mater Sci: Mater Electron 33, 8397–8408 (2022). https://doi.org/10.1007/s10854-021-06300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06300-y

Navigation