Skip to main content
Log in

Assembly of Co3S4 nanoporous structure on Ni foam for binder-free high-performance supercapacitor electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A facile method was proposed to synthesize a Co3S4-based binder-free electrode (Co3S4/Ni foam) in an aqueous solution containing 1-thioglycerol, cobalt nitrate, and sodium thiosulfate at 60 ℃, followed by calcination at 400 ℃. The Co3S4 membrane on Ni foam consists of spherical and elliptical nanoparticles, which were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The electrochemical investigation of the Co3S4/Ni foam electrode with cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) exhibits high areal capacitance (7.32 F cm−2 at 10 mA cm−2) and ultra-long cycling life (capacitance retention of 75% after 5000 charge/discharge cycles). The asymmetric supercapacitor device (ASC) assembled with Co3S4/Ni foam and activated carbon (AC) as positive and negative electrodes presents excellent electrochemical performances, suggesting the great application prospect of Co3S4/Ni foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang X, Ding Y, Li K, Guo X, Zhu Y, Zhang Y, Bao Z (2021) Spontaneous formation of the conformal carbon nanolayer coated Si nanostructures as the stable anode for lithium-ion batteries from silica nanomaterials. J Power Sources 496:229833

    Article  CAS  Google Scholar 

  2. Li K, Feng S, Jing C, Chen Y, Liu X, Zhang Y, Zhou L (2019) Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem Commun 55(91):13773–13776

    Article  CAS  Google Scholar 

  3. Wu S, Hui KS, Hui KN, Yun JM, Kim KH (2017) A novel approach to fabricate carbon sphere intercalated holey graphene electrode for high energy density electrochemical capacitors. Chem Eng J 317:461–470

    Article  CAS  Google Scholar 

  4. Ren L, Hui KN, Hui KS, Liu Y, Qi X, Zhong J, Du Y, Yang J (2015) 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Sci Rep 5:14229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li W, Yang YJ (2014) The reduction of graphene oxide by elemental copper and its application in the fabrication of grapheme supercapacitor. J Solid State Electrochem 18:1621–1626

    Article  CAS  Google Scholar 

  6. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 403:126352

    Article  CAS  Google Scholar 

  7. Hong X, Hui KS, Zeng Z, Hui KN, Zhang L, Mo M, Li M (2014) Hierarchical nitrogen-doped porous carbon with high surface area derived from endothelium corneum gigeriae galli for high-performance supercapacitor. Electrochim Acta 130:464–469

    Article  CAS  Google Scholar 

  8. Wu X, Hong X, Luo Z, Hui KS, Chen H, Wu J, Hui KN, Li L, Nan J, Zhang Q (2013) The effects of surface modification on the supercapacitive behaviors of novel mesoporous carbon derived from rod-like hydroxyapatite template. Electrochim Acta 89:400–406

    Article  CAS  Google Scholar 

  9. Liu JT, Zhang SH, Liu BS, Feng XN, Wang ZB (2022) MnO2 depositing on the surface of hollow porous carbon microspheres for supercapacitor application. Ceramics Int 48:10533–10538

    Article  CAS  Google Scholar 

  10. Schrade S, Zhao ZJ, Supiyeva Z, Chen XM, Dsoke S, Abbas Q (2022) An asymmetric MnO2|activated carbon supercapacitor with highly soluble choline nitrate-based aqueous electrolyte for sub-zero temperatures. Electrochim Acta 425:140708

    Article  CAS  Google Scholar 

  11. Yang YJ, Li Y, Ding X, Zhang C, Ren H, Guo F, Dong J (2021) Synthesis of nickel hexacyanoferrate nanostructure on carbon cloth with predeposited nickel nanoparticles as precursor for binder-free high-performance supercapacitor electrodes. J Alloys Compds 871:159510

    Article  CAS  Google Scholar 

  12. Yang YJ, Liu M, Jiang C, Yang P, Wang N, Chen S, Cheng Y (2021) One-step hydrothermal growth of reduced graphene oxide/nickel hexacyanoferrate nanocomposite on Ni foam for binder-free supercapacitor electrode. J Energy Storage 44:103462

    Article  Google Scholar 

  13. Yang YJ, Wang N, Chen S, Jiang C, Yang P, Liu M, Cheng Y (2022) The synthesis of Ni/Mn hexacyanoferrate microcubes and nanorods for high-performance asymmetric supercapacitor in neutral electrolyte. Int J Energy Res 46:14283–14294

    Article  CAS  Google Scholar 

  14. Choubari MS, Mazloom J, Ghodsi FE (2022) Supercapacitive properties, optical band gap, and photoluminescence of CeO2-ZnO nanocomposites prepared by eco-friendly green and citrate sol-gel methods: a comparative study. Ceramics Int 48:21344–21354

    Article  Google Scholar 

  15. Yang YJ, Cheng Y, Liu M, Jiang C, Yang P, Wang N, Chen S (2021) The facile conversion of iron foam into copper-coated 3D porous cobalt ferrite/iron foam for high-performance asymmetric hybrid supercapacitor. J Alloys Compds 888:161603

    Article  CAS  Google Scholar 

  16. Kim EB, Akhtar S, Akhtar MS, Ameen S (2022) Delafossite CuCrO2 nanoparticles as possible electrode material for electrochemical supercapacitor. Ceramics Int 48:16667–16676

    Article  Google Scholar 

  17. Samuel E, Aldalbahi A, El-Newehy M, El-Hamshary H, Yoon SS (2022) Flexible and freestanding manganese/iron oxide carbon nanofibers for supercapacitor electrodes. Ceramics Int 48:18374–18383

    Article  CAS  Google Scholar 

  18. Li K, Teng H, Sun Q, Li Y, Wu X, Dai X, Wang Y, Wang S, Zhang Y, Yao K, Bao Z, Rao J, Zhang Y (2022) Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J Energy Storage 53:105094

    Article  Google Scholar 

  19. Kumar L, Chauhan H, Yadav N, Yadav N, Hashmi SA, Deka S (2018) Faster ion switching NiCo2O4 nanoparticle electrode based supercapacitor device with high performances and long cycling stability. ACS Appl Energy Mater 1:6999–7006

    Article  CAS  Google Scholar 

  20. Kumar L, Boruah PK, Das MR, Deka S (2019) Superbending (0–180°) and high-voltage operating metal-oxide based flexible supercapacitor. ACS Appl Mater Interfaces 11:37665–37674

    Article  CAS  PubMed  Google Scholar 

  21. Kumar L, Chauhan M, Boruah PK, Das MR, Hashmi SA, Deka S (2020) Coral-shaped bifunctional NiCo2O4 nanostructure: a material for highly efficient electrochemical charge storage and electrocatalytic oxygen evolution reaction. ACS Appl Energy Mater 3:6793–6804

    Article  CAS  Google Scholar 

  22. Yang YJ, Jiang C, Chen S, Wang N, Yang P, Liu M, Cheng Y (2022) Direct growth of hierarchical CoFe2O4 flower-like nanoflake arrays on Ni foam for high performance asymmetrical supercapacitor. J Electroanal Chem 918:116385

    Article  Google Scholar 

  23. Yang YJ, Li W (2019) Hierarchical Ni-Co double hydroxide nanosheets on reduced graphene oxide self-assembled on Ni foam for high-energy hybrid supercapacitors. J Alloys Compds 776:543–553

    Article  CAS  Google Scholar 

  24. Shakir I, Almutairi Z, Shar SS, Nafady A (2022) Fabrication of a flower-like Cu(OH)2 nanoarchitecture and its composite with CNTs for use as a supercapacitor electrode. Ceramics Int 48:11278–11285

    Article  CAS  Google Scholar 

  25. Yang YJ, Chen S, Jiang C, Yang P, Wang N, Cheng Y, Liu M (2022) Hierarchical web-like NiFeMn ternary hydroxides microstructure assembled on reduced graphene oxide for binder-free supercapacitor electrode. Diamond Related Mater 125:109009

    Article  CAS  Google Scholar 

  26. Guo YN, Hao C, Wang XK, Yang Y, Wang XH, Wu JB, Shen YT (2022) Facile fabrication of CoNi-layered double hydroxide/NiCo2S4/reduced graphene oxide composites by in situ hydrothermal growth strategy for supercapacitor performance. Ceramics Int 48:17644–17653

    Article  CAS  Google Scholar 

  27. Yang YJ, Li W (2020) The composite of 3D carbon nanotube architecture and NiCo double hydroxide for high-performance supercapacitor. Ionics 26:4685–4694

    Article  CAS  Google Scholar 

  28. Li K, Teng H, Dai X, Wang Y, Wang D, Zhang X, Yao Y, Liu X, Feng L, Rao J, Zhang Y (2022) Atomic scale modulation strategies and crystal phase transition of flower-like CoAl layered double hydroxides for supercapacitors. CrystEngComm 24:2081–2088

    Article  Google Scholar 

  29. Zhu X, Liu S (2022) Construction of hollow-sphere CuNi2S4 with optimized structure and boosting conductivity for hybrid supercapacitor. J Energy Storage 51:104582

    Article  Google Scholar 

  30. Tian F, Liu S, Li H, Li D, Han X (2022) Preparation and electrochemical capacitance of different micro morphology zinc sulfide on nickel foam for asymmetric supercapacitor. J Energy Storage 50:104600

    Article  Google Scholar 

  31. Sun XY, Pang YA, Li SM, Yu YM, Ding XF, Wang LX, Zhang QT (2022) High performance asymmetric supercapacitor based on 3D microsphere-like 1T-MoS2 with high 1T phase content. Ceramics Int 48:21317–21326

    Article  Google Scholar 

  32. Shao W, Wang Q, Zhan D (2022) Defect engineering of P doped Fe7S8 porous nanoparticles for high performance asymmetric supercapacitor and oxygen evolution electrocatalyst. J Colloid Interface Sci 617:84–93

    Article  CAS  PubMed  Google Scholar 

  33. Tamang TL, Mohamed SG, Dhakal G, Shim JJ (2022) Morphology controlling of manganese-cobalt-sulfide nanoflake arrays using polyvinylpyrrolidone capping agent to enhance the performance of hybrid supercapacitors. J Colloid Interface Sci 624:494–504

    Article  Google Scholar 

  34. Yang Y, Qian D, Zhu H, Zhou Q, Zhang Z, Li Z, Hua Z (2022) Construction of tremella-like Co9S8@NiCo2S4 heterostructure nanosheets integrated electrode for high-performance hybrid supercapacitors: conceptualization, methodology, formal analysis. J Alloys Compds 898:162850

    Article  CAS  Google Scholar 

  35. Li K, Hu Z, Zhao R, Zhou J, Jing C, Sun Q, Rao J, Yao K, Dong B, Liu X, Li H, Zhang Y, Ji J (2021) A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. J Colloid Interface Sci 603:799–809

    Article  CAS  PubMed  Google Scholar 

  36. Nath AR, Madhu B, Mohan A, N S, (2022) Enhancing the stability of electrochemical asymmetric supercapacitor by incorporating thiophene-pyrrole copolymer with nickel sulfide/nickel hydroxide composite. J Energy Storage 46:103833

    Article  Google Scholar 

  37. Xie L, Li M, Zhu P, Xiao X, Jia Z, Wei Z, Jiang J (2022) Novel combination of nickel-cobalt sulfide and oxide derived from Ni2CoS4@ZIF-67 for high performance supercapacitor. J Alloys Compds 898:162861

    Article  CAS  Google Scholar 

  38. Askari MB, Rozati SM, Salarizadeh P, Azizi S (2022) Reduced graphene oxide supported Co3O4-Ni3S4 ternary nanohybrid for electrochemical energy storage. Ceramics Int 48:16123–16130

    Article  CAS  Google Scholar 

  39. Hu R, Liao YM, Qiao H, Li J, Wang K, Huang ZY, Qi X (2022) Electrochemical method integrating exfoliation and in-situ growth to synthesize MoS2 nanosheets/MnO2 heterojunction for performance-enhanced supercapacitor. Ceramics Int 48:23498–23503

    Article  CAS  Google Scholar 

  40. Fang QS, Sun MX, Ren XH, Sun YX, Yan YJ, Gan ZW, Huang JA, Cao BB, Shen WZ, Li ZJ, Fu YQ (2022) MnCo2O4/Ni3S4 nanocomposite for hybrid supercapacitor with superior energy density and long-term cycling stability. J Colloid Interface Sci 611:503–512

    Article  CAS  PubMed  Google Scholar 

  41. Xu Q, Wang YT, Meng SC, Jiang DL, Chen M (2022) Stable and enhanced electrochemical performance based on hierarchical core-shell structure of CoMn2O4@Ni3S2 electrode for hybrid supercapacitor. Nanotechnology 33:095707

    Article  CAS  Google Scholar 

  42. Guo YN, Hao C, Yang Y, Wu XL, Ni CH, Wang XK, Wang XH (2022) Convenient synthesis of Ni-Mn-S@rGO composite with enhanced performance for advanced energy storage applications. Ceramics Int 48:9558–9568

    Article  CAS  Google Scholar 

  43. Sakthivel P, Babu GA, Karuppiah M, Asaithambi S, Balaji V, Pandian MS, Ramasamy P, Mohammed MKA, Navaneethan N, Ravi G (2022) Electrochemical energy storage applications of carbon nanotube supported heterogeneous metal sulfide electrodes. Ceramics Int 48:6157–6165

    Article  CAS  Google Scholar 

  44. Wang Q, Qu Z, Chen S, Zhang D (2022) Metal organic framework derived P-doping CoS@C with sulfide defect to boost high-performance asymmetric supercapacitors. J Colloid Interface Sci 624:385–393

    Article  CAS  PubMed  Google Scholar 

  45. Li GF, Xie GQ, Chen D, Gong C, Chen X, Zhang Q, Pang BL, Zhang YC, Li CJ, Hu J, Chen YJ, Yu LY, Dong LF (2022) Facile synthesis of bamboo-like Ni3S2@NCNT as efficient and stable electrocatalysts for non-enzymatic glucose detection. Appl Surf Sci 585:152683

    Article  CAS  Google Scholar 

  46. Xiao JP, Tong H, Jin FQ, Gong DX, Chen XD, Wu Y, Zhou Y, Shen LF, Zhang XG (2022) Heterostructure NiS2/NiCo2S4 nanosheets array on carbon nanotubes sponge electrode with high specific capacitance for supercapacitors. J Power Sources 518:230763

    Article  CAS  Google Scholar 

  47. Wan L, Zhou K, Zhang Y, Chen J, Xie M, Du C (2022) Nickel cobalt sulfide coated iron nickel selenide hierarchical nanosheet arrays toward high-performance supercapacitors. J Colloid Interface Sci 614:355–366

    Article  CAS  PubMed  Google Scholar 

  48. Luo L, Zhou Y, Yan W, Du G, Fan M, Zhao W (2022) Construction of advanced zeolitic imidazolate framework derived cobalt sulfide/MXene composites as high-performance electrodes for supercapacitors. J Colloid Interface Sci 615:282–292

    Article  CAS  PubMed  Google Scholar 

  49. Guo H, Zhang JY, Yang F, Wang MY, Zhang TT, Hao YR, Yang W (2022) Sandwich-like porous MXene/Ni3S4/CuS derived from MOFs as superior supercapacitor electrode. J Alloys Compds 906:163863

    Article  CAS  Google Scholar 

  50. Anuratha KS, Su YZ, Wang PJ, Hasin P, Wu JH, Hsieh CK, Chang JK, Lin JY (2022) Free-standing 3D core-shell architecture of Ni3S2@NiCoP as an efficient cathode material for hybrid supercapacitors. J Colloid Interface Sci 625:565–575

    Article  Google Scholar 

  51. Cao SF, Li HZ, Zhou XJ, Guo HB, Chen YG (2022) NiS/activated carbon composite derived from sodium lignosulfonate for long cycle-life asymmetric supercapacitors. J Alloys Compds 900:163546

    Article  CAS  Google Scholar 

  52. Hekmat F, Balim U, Unalan HE (2022) Scalable, microwave-assisted decoration of commercial cotton fabrics with binary nickel cobalt sulfides towards textile-based energy storage. Electrochim Acta 404:139731

    Article  CAS  Google Scholar 

  53. Zhang K, Zeng HY, Li HB, Xu S, Lv SB, Wang MX (2022) Controllable preparation of CuCo2S4 nanotube arrays for high-performance hybrid supercapacitors. Electrochim Acta 404:139681

    Article  CAS  Google Scholar 

  54. Sarma B, Ray RS, Misra M (2015) Charge storage in flower-like ZnS electrochemically deposited on TiO2 nanotube. Mater Lett 139:77–80

    Article  CAS  Google Scholar 

  55. Zhao N, Fan HQ, Ma JW, Zhang MC, Wang C, Li H, Jiang XB, Cao XQ (2022) Nickel oxide/sulfide nanoparticle-embedded porous carbon prepared from kelp for excellent asymmetrical supercapacitors and microwave absorbers. J Alloys Compds 918:165721

    Article  Google Scholar 

  56. Yang YJ, Hu S (2008) The deposition of highly uniform and adhesive nanocrystalline PbS film from solution. Thin Solid Films 516:6048–6051

    Article  CAS  Google Scholar 

  57. Yang YJ, He LY (2005) A novel galvanic cell and its application in the preparation of lead sulfide nanomaterials. Electrochim Acta 50:3581–3584

    Article  CAS  Google Scholar 

  58. Yang YJ, He LY (2006) Dissolution of lead electrode and preparation of rod-shaped PbS crystals in a novel galvanic cell. J Solid State Electrochem 10:430–433

    Article  CAS  Google Scholar 

  59. Du X, Li J, Tong K, Zhang X (2022) Fe-Co-S-Se-O nanoarrays for ultrahigh specific capacitance asymmetric supercapacitors. J Alloys Compds 899:163359

    Article  CAS  Google Scholar 

  60. Guo CL, Zhang YY, Yin MS, Shi JH, Zhang WK, Wang XM, Wu YC, Ma JC, Yuan D, Jia CK (2021) Co3O4@Co3S4 core-shell neuroid network for high cycle-stability hybrid-supercapacitors. J Power Sources 485

  61. Zhang SZ, Wang KF, Chen HC, Liu HZ, Yang L, Chen YJ, Li H (2022) ZIF-67 derived in-situ grown N-Co3S4-GN/CNT interlinked conductive networks for high-performance especially cycling stable supercapacitors. Carbon 194:10–22

  62. Gao ZY, Chen C, Chang JL, Chen LM, Wang PY, Wu DP, Xu F, Jiang K (2018) Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem Eng J 343:572–582

  63. Patil SJ, Kim JH, Lee DW (2017) Graphene-nanosheet wrapped cobalt sulphide as a binder free hybrid electrode for asymmetric solid-state supercapacitor. J Power Sources 342:652–665

  64. Li ZL, Ren J, Yang CM, He YX, Liang Y, Liu JL, Waterhouse GIN, Li JH, Qian D (2021) Sodium 5-sulfosalicylate-assisted hydrothermal synthesis of a self-supported Co3S4-Ni3S2@nickel foam electrode for all-solid-state asymmetric supercapacitors. J Alloys Compds 889

  65. Tian Y, Xue ZG, Zhao QQ, Guo J, Tao K, Han L (2022) MOF-derived hierarchical core-shell hollow Co3S4@NiCo2O4 nanosheet arrays for asymmetric supercapacitors. Dalton Trans 51:4406–4413

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jun Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1234 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.J., Chen, S., Jiang, C. et al. Assembly of Co3S4 nanoporous structure on Ni foam for binder-free high-performance supercapacitor electrode. J Solid State Electrochem 27, 1107–1118 (2023). https://doi.org/10.1007/s10008-023-05413-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05413-0

Keywords

Navigation