Skip to main content

Advertisement

Log in

Effect of zirconium hydrolysis degree on the dielectric properties of PbZrO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the dielectric properties of PbZrO3 thin films are studied as a function of the water/acetic acid solvent ratio of the precursor sol–gel solution. By increasing the water ratio from 35/65 to 85/15, the saturation polarization increases from 24.3 to 27.2 µC/cm2 and the antiferroelectric–ferroelectric field transition (EAF) from 528 to 564 kV/cm. When the hydrolysis rate is higher, the antiferroelectric phase is stabilized due to a denser antiferroelectric matrix with lower defects. As the consequence, the energy storage performances are better for a higher hydrolysis rate: the recoverable energy density increases from 6.3 to 10 J/cm3 and the efficiency from 67 to 71%. A higher permittivity and lower dielectric losses confirm also the enhancement of the antiferroelectric matrix when increasing the amount of water in the precursor solution. In order to obtain better energy storage and dielectric properties, it is preferable to have a high ratio water/acetic acid in the precursor sol–gel solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available within the article.

References

  1. G. Yi, M. Sayer, J. Sol-Gel Sci. Technol. (1996). https://doi.org/10.1007/BF00402590

    Article  Google Scholar 

  2. B.E. Yoldas, J. Mater. Sci. (1986). https://doi.org/10.1007/BF01117399

    Article  Google Scholar 

  3. J. Phalippou, L. Kocon, Elaboration des gels et des aérogels. in Techniques de l′ingénieur. Génie des procédés, J2230 (2004)

  4. C. Koch, I. Ovid’ko, S. Seal, S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007).

    Book  Google Scholar 

  5. C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic press, Cambridge, 2013).

    Google Scholar 

  6. C. Sanchez, J. Livage, M. Henry, F. Babonneau, J. Non-Cryst, Solids (1988). https://doi.org/10.1016/0022-3093(88)90007-5

    Article  Google Scholar 

  7. C. Wolf, C. Rüssel, J. Mater. Sci. (1992). https://doi.org/10.1007/BF00545451

    Article  Google Scholar 

  8. G. Koster, M. Huijben, G. Rijnders, Epitaxial Growth of Complex Metal Oxides (Elsevier, Amsterdam, 2015).

    Google Scholar 

  9. K. Sinkó, Materials (2010). https://doi.org/10.3390/ma3010704

    Article  Google Scholar 

  10. C.D. Lakeman, D.A. Payne, J. Am. Ceram. Soc. (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04392.x

    Article  Google Scholar 

  11. J. Ge, D. Remiens, X. Dong, Y. Chen, J. Costecalde, F. Gao, F. Cao, G. Wang, Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4896156

    Article  Google Scholar 

  12. Y.Z. Li, Z.J. Wang, Y. Bai, Z.D. Zhang, J. Eur. Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.063

    Article  Google Scholar 

  13. M.D. Coulibaly, C. Borderon, R. Renoud, H.W. Gundel, Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0017984

    Article  Google Scholar 

  14. C.K. Kwok, S.B. Desu, Appl. Phys. Lett. (1992). https://doi.org/10.1063/1.107312

    Article  Google Scholar 

  15. M.D. Coulibaly, C. Borderon, R. Renoud, H.W. Gundel, Thin Solid Films (2020). https://doi.org/10.1016/j.tsf.2020.138432

    Article  Google Scholar 

  16. T. Tani, J. Li, D. Viehland, D.A. Payne, J. Appl. Phys. (1994). https://doi.org/10.1063/1.356146

    Article  Google Scholar 

  17. S. Kalpat, K. Uchino, J. Appl. Phys. (2001). https://doi.org/10.1063/1.1385580

    Article  Google Scholar 

  18. Y. Zhao, H. Gao, X. Hao, Q. Zhang, Mater. Res. Bull. (2016). https://doi.org/10.1016/j.materresbull.2016.08.005

    Article  Google Scholar 

  19. W. Zhu, W. Ren, H. Xin, P. Shi, X. Wu, J. Adv. Dielectr. (2013). https://doi.org/10.1142/S2010135X13500112

    Article  Google Scholar 

  20. J.G. Bleazard, T.F. Sun, A.S. Teja, Int. J. Thermophys. (1996). https://doi.org/10.1007/BF01448214

    Article  Google Scholar 

  21. V.R. Mudinepalli, L. Feng, W.C. Lin, B.S. Murty, J. Adv. Ceram. (2015). https://doi.org/10.1007/s40145-015-0130-8

    Article  Google Scholar 

  22. T.M. Butler, B.D. MacCraith, C. McDonagh, J. Non-Cryst, Solids (1998). https://doi.org/10.1016/S0022-3093(97)00481-X

    Article  Google Scholar 

  23. C.A. Milea, C. Bogatu, A. Duta, Bull. Transilv. Univ. Bras. Ser. I Eng. Sci. 4, 53 (2011)

    Google Scholar 

  24. C.W. Ahn, G. Amarsanaa, S.S. Won, S.A. Chae, D.S. Lee, I.W. Kim, A.C.S. Appl, Mater. Interfaces (2015). https://doi.org/10.1021/acsami.5b08786

    Article  Google Scholar 

  25. C. Borderon, K. Nadaud, M.D. Coulibaly, R. Renoud, H.W. Gundel, Int. J. Adv. Res. Phys. Sci. 6(2), 1 (2019)

    Google Scholar 

  26. L. Padurariu, V.A. Lukacs, G. Stoian, N. Lupu, L.P. Curecheriu, Materials (2020). https://doi.org/10.3390/ma13194386

    Article  Google Scholar 

  27. D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, R. Moos, J. Ceram. Sci. Technol. (2015). https://doi.org/10.4416/JCST2015-00018

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MDC contributed to conceptualization, methodology, and writing—review and editing. CB performed supervision, visualization, and writing—review and editing. RR performed supervision, visualization, and review and editing. HWG was involved in supervision and visualization.

Corresponding author

Correspondence to Mamadou D. Coulibaly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulibaly, M.D., Borderon, C., Renoud, R. et al. Effect of zirconium hydrolysis degree on the dielectric properties of PbZrO3. J Mater Sci: Mater Electron 32, 15964–15970 (2021). https://doi.org/10.1007/s10854-021-06146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06146-4

Navigation