Skip to main content
Log in

A turn-on fluorescent sensor based on coffee-ground carbon dots for the detection of sodium cyclamate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs) were synthesized by coffee grounds as the carbon source under hydrothermal carbonization treatment for the first time. The obtained turn-on CQDs showed a strong emission at the wavelength of 460 nm, with an optimum excitation of 370 nm, and enrichment of the surface functional groups (–OH, –NH2). Sodium cyclamate in an aqueous solution and the turn-on CQDs could form a core–shell structure by hydrogen bonding and van der waals bonding to enhance the fluorescent emission. With such a design, turn-on CQD-based fluorescence detection techniques towards sodium cyclamate could be realized. Under optimal conditions, a linear relationship was found in the range of 2.8–56 µmol/L sodium cyclamate with the detection limit (3δ/k) of 3.16 µmol/L which is lower than the national standard detection limit of 49.7 µmol/L. The sensitive method has a great application prospect in detection of sodium cyclamate in real samples owing to its low detection limit, simplicity and rapidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.-B. Yu, B.-H. Zhu, F. Lv, S.-X. Li, W.-X. Huang, Food Chem. 134, 2424–2429 (2012)

    Article  CAS  Google Scholar 

  2. Y. Hu, M.-Y. Xie, X.-Y. Wu, Spectrochim. Acta A 220, 117085–117091 (2019)

    Article  CAS  Google Scholar 

  3. M. Behrens, K. Blank, W. Meyerhof, Cell Chem. Biol. 24, 1199–1204 (2017)

    Article  CAS  Google Scholar 

  4. GB2760-2014, National standard for food safety Standard for use of food additives. (Standards Press of China, Beijing, 2014)

  5. P. Cao, N. Ma, J. Liang, X.-D. Wang, H.-B. Xu, Chin. J. Food Hyg. 28, 111–114 (2016)

    Google Scholar 

  6. Z.-H. Chen, G.-Y. Chen, K. Zhou, P. Zhang, X.-L. Ren, X.-F. Mei, Biochem. Biophys. Res. Commun. 508, 507–511 (2019)

    Article  CAS  Google Scholar 

  7. M. Hashemi, A. Habibi, N. Jahanshahi, Food Chem. 124, 1258–1263 (2010)

    Article  Google Scholar 

  8. I. Casals, M. Reixach, J. Amat, M. Fuentes, L. SerraMajem, J. Chromatogr. A. 750, 397–402 (1996)

    Article  CAS  Google Scholar 

  9. Z.-Q. Huang, J.-Y. Ma, B. Chen, Y. Zhang, S.-Z. Yao, Anal. Chim. Acta 555, 233–237 (2005)

    Article  Google Scholar 

  10. Y.-T. Wang, B. Li, X.-J. Xu, H.-B. Ren, J.-Y. Yin, H. Zhu, Y.-H. Zhang, Food Chem. 303, 125404–125415 (2020)

    Article  CAS  Google Scholar 

  11. X.-M. Li, S.-Q. Li, H.-M. Li, J. Wang, Q. Luo, X. Yin, Food Chem. 342, 128331–128339 (2021)

    Article  CAS  Google Scholar 

  12. D.M. Cárdenas-Soracá, V. Singh, E. Nazdrajić, T. Vasiljević, J.J. Grandy, J. Pawliszyn, Talanta 211, 120714–120723 (2020)

    Article  Google Scholar 

  13. S.-G. Xia, D. Yin, Y.-L. Chen, Z.-C. Yang, Y. Miao, W.-F. Zhang, S. Chen, W.-D. Zhao, S.-S. Zhang, Can. J. Chem. 97, 344–351 (2019)

    Article  CAS  Google Scholar 

  14. X.-D. Tang, H.-M. Yu, B. Bui, L.-Y. Wang, C. Xing, S.-Y. Wang, M.-L. Chen, Z.-Z. Hu, W. Chen, Bioact. Mater. 6, 1541–1554 (2021)

    Article  CAS  Google Scholar 

  15. C. Karami, M.A. Taher, M. Shahlaei, J. Mater. Sci. Mater. Electron. 31, 5975–5983 (2020)

    Article  CAS  Google Scholar 

  16. Y. Dong, Y.-D. Zhang, S.-M. Zhi, X.-Y. Yang, C. Yao, ChemistrySelect 6, 123–130 (2021)

    Article  CAS  Google Scholar 

  17. M. Masteri-Farahani, N. Mosleh, J. Mater. Sci. Mater. Electron. 30, 21170–21176 (2019)

    Article  CAS  Google Scholar 

  18. G.K. Kanthi, A. Tejaswini, H.-F. Wu, B. Venkateswararao, J. Anil, R.A. Kumar, G. Gangaraju, Colloids Surf. B 197, 111362–111369 (2021)

    Article  Google Scholar 

  19. X.-F. Lin, M.-G. Xiong, J.-W. Zhang, C. He, X.-M. Ma, H.-F. Zhang, Y. Kuang, M. Yang, Q.-T. Huang, Microchem. J. 160, 105604–105620 (2021)

    Article  CAS  Google Scholar 

  20. M. Galal, A.F.A. Hakiem, B. Fathalla, A.M. Abdel-Megied, Food Chem. 343, 128539–128548 (2021)

    Article  Google Scholar 

  21. L.-F. Liu, Q. Hu, H.-J. Sun, J. Han, Y.-N. Pan, Z.-Q. Yang, J. Food Compos. Anal. 94, 103639–103647 (2020)

    Article  CAS  Google Scholar 

  22. L.-J. Ren, X.-X. Hang, Z.-R. Qin, P. Zhang, W. Wang, Y.-T. Zhang, L.Y. Jiang, Optik 208, 163560–163566 (2020)

    Article  CAS  Google Scholar 

  23. X. Zhou, Q. Qu, L. Wang, L. Li, S.-L. Li, K. Xia, J. Nanopart. Res. 22, 20–33 (2020)

    Article  CAS  Google Scholar 

  24. Y.-N. Sun, M. Zhang, B. Bhandari, C.-H. Yang, Food Rev. Int (2020). https://doi.org/10.1080/87559129.2020.1818255

    Article  Google Scholar 

  25. Y.-W. Rong, S. Ali, Q. Ouyang, L. Wang, B. Wang, Q.-S. Chen, Food Chem. 351, 129215–129223 (2021)

    Article  CAS  Google Scholar 

  26. S. Palanisamy, L.-F. Chen, S.-C. Tzou, Y.-M. Wang, Sens. Actuator B 310, 127839–127847 (2020)

    Article  CAS  Google Scholar 

  27. J.-X. Xu, J.-W. Xiong, Y.-L. Qin, Z.-Z. Li, C.-Q. Pan, Y.-P. Huo, H.-L. Zhang, Mater. Chem. Front. 4, 3338–3348 (2020)

    Article  CAS  Google Scholar 

  28. D. Kim, H. Choi, C. Lee, Biomass Convers. Biorefinery (2020). https://doi.org/10.1007/s13399-020-01171-5

    Article  Google Scholar 

  29. I.J. Buerge, T. Poiger, M.D. Muller, H.R. Buser, Environ. Sci. Technol. 37, 691–700 (2003)

    Article  CAS  Google Scholar 

  30. H. Rumana, N.R. Khayyam, M. Irshad, S. Veena, J. Energy Storage 33, 102113–102123 (2021)

    Article  Google Scholar 

  31. H.-Y. Du, G. He, T.-H. Liu, L.-P. Ding, Y. Fang, J. Photochem. Photobiol. A 217, 356–362 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the scholars' science and technology activities project of Sichuan province in 2018 and supported by Sichuan Science and Technology Program (2021JDRC0105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Du, H., Xu, Y. et al. A turn-on fluorescent sensor based on coffee-ground carbon dots for the detection of sodium cyclamate. J Mater Sci: Mater Electron 32, 13581–13587 (2021). https://doi.org/10.1007/s10854-021-05933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05933-3

Navigation