Skip to main content
Log in

Carbon Dots Derived from Coffee Residue for Sensitive and Selective Detection of Picric Acid and Iron(III) Ions

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A facile method was developed to prepare carbon dots(CDs) by pyrolysis and etching of coffee residue. The as-prepared CDs show uniform spherical nanoparticles with an average size of 2.3 nm and exhibit excitation-dependent fluorescence emissions. Moreover, CDs also exhibit strong fluorescence quenching to nitro compounds and metal ions in both water and ethanol solutions, which could act as a platform for dual detection of PA(picric acid) and Fe3+ ions with low detection limits of 0.26 and 0.83 µmol/L, respectively. This work provides a novel method for preparation of environmental-friendly fluorescent CDs and shows their potential applications in photoluminescence sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park C. H., Yang H., Lee J., Cho H. H., Kim D., Lee D. C., Chem. Mater., 2015, 27, 5288

    Article  CAS  Google Scholar 

  2. Liu H. F., Sun Y. Q., Li Z. H., Yang J., Aryee A. A., Qu L. B., Du D., Lin Y. H., Nanoscale, 2019, 11, 8458

    Article  CAS  PubMed  Google Scholar 

  3. Chen L., Zheng J. X., Du Q., Yang Y. Z., Liu X. G., Xu B. S., Opt. Mater., 2020, 109, 110346

    Article  CAS  Google Scholar 

  4. He W., Weng W. T., Sun X. Y., Pan Y. J., Chen X. Y., Liu B., Shen J. S., ACS Appl. Nano Mater., 2020, 3, 7420

    Article  CAS  Google Scholar 

  5. Feizpoor S., Habibi Y. A., Seifzadeh D., Ghosh S., Sep. Purif. Technol., 2020, 248, 116928

    Article  CAS  Google Scholar 

  6. Zhong H., Sa R. J., Lv H. W., Yang S. L., Yuan D. Q., Wang X. C., Wang R. H., Adv. Funct. Mater., 2020, 2002654

  7. Baker S. N., Baker G. A., Angew. Chem. Int. Ed., 2010, 49, 6726

    Article  CAS  Google Scholar 

  8. Zhang H. C., Huang H., Ming H., Li H. T., Zhang L. L., Liu Y., Kang Z. H., J. Mater. Chem., 2012, 22, 10501

    Article  CAS  Google Scholar 

  9. Ray S. C., Saha A., Jana N. R., Sarkar R., J. Phys. Chem. C, 2009, 113, 18546

    Article  CAS  Google Scholar 

  10. Li H. T., Kang Z. H., Liu Y., Lee S. T., J. Mater. Chem., 2012, 22, 24230

    Article  CAS  Google Scholar 

  11. Cui L., Ren X., Wang J., Sun M., Materials Today Nano, 2020, 12, 100091

    Article  Google Scholar 

  12. Sun D., Ban R., Zhang P. H., Wu G. H., Zhang J. R., Zhu J. J., Carbon, 2013, 64, 424

    Article  CAS  Google Scholar 

  13. Liu R. H., Huang H., Li H. T., Liu Y., Zhong J., Li Y. Y., Zhang S., Kang Z. H., ACS Catal., 2014, 4, 328

    Article  CAS  Google Scholar 

  14. Wang Q., Liu X., Zhang L. C., Lv Y., Analyst, 2012, 137, 5392

    Article  CAS  PubMed  Google Scholar 

  15. Biazar N., Poursalehi R., Delavari H., AIP Conference Proceedings, 2018, 1920, 020033

    Article  CAS  Google Scholar 

  16. Lin L. X., Zhang S. W., Chem. Commun., 2012, 48, 10177

    Article  CAS  Google Scholar 

  17. Liu R. L., Wu D. Q., Liu S. H., Koynov K., Knoll W., Li Q., Angew. Chem. Int. Ed., 2009, 48, 4598

    Article  CAS  Google Scholar 

  18. Ju B., Wang Y., Zhang Y. M., Zhang T., Liu Z. H., Li M. J., Zhang X. A., ACS Appl. Mater. Interfaces, 2018, 10, 13040

    Article  CAS  PubMed  Google Scholar 

  19. Zou Y., Yan F. Y., Zheng T. C., Shi D. C., Sun F. Z., Yang N., Chen L., Talanta, 2015, 135, 145

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z. C., Wang M., Yong A. M., Wong S. Y., Zhang X. H., Tan H., Chang A. Y., Li X., Wang J., Chem. Commun., 2011, 47, 11615

    Article  CAS  Google Scholar 

  21. Zhai X. Y., Zhang P., Liu C. J., Bai T., Li W. C., Dai L. M., Liu W. G., Chem. Commun., 2012, 48, 7955

    Article  CAS  Google Scholar 

  22. Sahu S., Behera B., Maiti T. K., Mohapatra S., Chem. Commun., 2012, 48, 8835

    Article  CAS  Google Scholar 

  23. Roy R., Chen P. C., Periasamy A. P., Chen Y. N., Chang H. T., Mater. Today, 2015, 18, 447

    Article  CAS  Google Scholar 

  24. Wang B. L., Zong S. Y., Li J. Y., Chem. J. Chinese Universities, 2021, 42(1), 299

    Google Scholar 

  25. Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H. F., Luo P. G., Yang H., Kose M. E., Chen B. L., Veca M., Xie S. Y., J. Am. Chem. Soc., 2006, 128, 7756

    Article  CAS  PubMed  Google Scholar 

  26. Xu X. Y., Ray R., Gu Y. L., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126, 12736

    Article  CAS  PubMed  Google Scholar 

  27. Xiu Y., Gao Q., Li G., Wang K. X., Chen J. S., Inorg. Chem., 2010, 49, 5859

    Article  CAS  PubMed  Google Scholar 

  28. Qi H. J., Teng M., Liu M., Liu S. X., Li J., Yu H. P., Teng C. B., Huang Z. H., Liu H., Shao Q., Umar A., Ding T., Gao Q., Guo Z. H., J. Colloid Interface Sci., 2019, 539, 332

    Article  CAS  PubMed  Google Scholar 

  29. Briscoe J., Marinovic A., Sevilla M., Dunn S., Titirici M., Angew. Chem. Int. Ed., 2015, 54, 4463

    Article  CAS  Google Scholar 

  30. Abbas A., Tabish T. A., Bull S. J., Lim T. M., Phan A. N., Sci. Rep., 2020, 10, 21262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang W. Y., Jia L. H., Guo X. F., Yang R., Zhang Y., Zhao Z. L., Analyst, 2019, 144, 7421

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X. Y., Wang H., Ma C. H., Niu N., Chen Z. J., Liu S. X., Li J., Li S. J., Mater. Chem. Front., 2018, 2, 1269

    Article  CAS  Google Scholar 

  33. Du J. J., Jiang L., Shao Q., Liu X. G., Marks R. S., Ma J., Chen X. D., Small, 2013, 9, 1467

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y. S., Zhao Y. N., Zhang Y. Y., Sens. Actuator B—Chem., 2014, 196, 647

    Article  CAS  Google Scholar 

  35. Xiao L., Sun H. D., Nanoscale Horiz., 2018, 3, 565

    Article  CAS  PubMed  Google Scholar 

  36. Sahu S., Behera B., Maiti T. K., Mohapatra S., Chem. Commun., 2012, 48, 8835

    Article  CAS  Google Scholar 

  37. Wang B. L., Mu Y., Zhang C. H., Li J. Y., Sens. Actuator B—Chem., 2017, 253, 911

    Article  CAS  Google Scholar 

  38. Rong M. C., Lin L. P., Song X. H., Zhao T. T., Zhong Y. X., Yan J. W., Wang Y. R., Chen X., Anal. Chem., 2015, 87, 1288

    Article  CAS  PubMed  Google Scholar 

  39. Liang Z. C., Kang M. J., Payne G. F., Wang X. H., Sun R. C., ACS Appl. Mater. Interfaces, 2016, 8, 17478

    Article  CAS  PubMed  Google Scholar 

  40. Wang X., Liu Y. L., Zhou Q. X., Sheng X. Y., Sun Y., Zhou B. Y., Zhao J. Y., Guo J. H., Sci. Total Environ., 2020, 720, 137680

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y. B., Chan K. F., Wang B., Chiu P. W. Y., Zhang Z., Sens. Actuator B—Chem., 2018, 271, 12

    Google Scholar 

  42. Song Y., Zhu C. Z., Song J. H., Li H., Du D., Lin Y. H., ACS Appl. Mater. Interfaces, 2017, 9, 7399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(No. 21671075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yan or Jiyang Li.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, S., Wang, B., Ma, W. et al. Carbon Dots Derived from Coffee Residue for Sensitive and Selective Detection of Picric Acid and Iron(III) Ions. Chem. Res. Chin. Univ. 37, 623–628 (2021). https://doi.org/10.1007/s40242-021-1028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1028-3

Keywords

Navigation