Skip to main content
Log in

Catalytic properties of the composite of La-doped ZnO nanorods and Ag2CrO4 nanoparticles

  • Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To study the application of ZnO in photocatalysis, a composite of La-doped ZnO nanorods and Ag2CrO4 nanoparticles was prepared by hydrothermal and precipitation methods. At a fixed concentration, the volume of Ag+ precursor has a significant effect on the composition and structure of the composite. With the increase in the Ag+ source volume, the amount of Ag2CrO4 nanoparticles generated in the composite increases. When the volume of the Ag+ source exceeds some critical value, although the amount of Ag2CrO4 nanoparticles in the composite continues to increase, the quality of the crystals is lower. Both the content and crystal quality of Ag2CrO4 nanoparticles affect the photocatalytic properties of the composite. The introduction of additional oxygen vacancy defects in nanorods leads to the formation of more, and larger, Ag2CrO4 nanoparticles in the composite without degradation of crystal quality. Then, two dyes (methyl orange and methylene blue) were selected to examine the photocatalytic properties of the samples. The improvement of photocatalytic performance of the composite samples is realized by the separation of electron–hole pairs in both ZnO and Ag2CrO4 crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Qin, F. Meng, M.W. Khan, B. Yu, H.J. Li, Z.H. Fan, J.F. Gong, Fabrication and enhanced photocatalytic property of TiO2–ZnO composite photocatalysts. Mater. Lett. 240, 84–87 (2019)

    Article  Google Scholar 

  2. S.F. Chen, F.N. Liu, M.Z. Xu, J.F. Yan, F.C. Zhang, W. Zhao, Z.Y. Zhang, Z.H. Deng, J.N. Yun, R.Y. Chen, C.L. Liu, First-principles calculations and experimental investigation on SnO2@ZnO heterojunction photocatalyst with enhanced photocatalytic performance. J. Colloid Interface Sci. 553, 613–621 (2019)

    Article  ADS  Google Scholar 

  3. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustain. Cities Soc. 27, 407–418 (2016)

    Article  Google Scholar 

  4. S.A. Mozaffari, M. Ranjbar, E. Kouhestanian, H. Salar Amoli, M.H. Armanmehr, An investigation on the effect of electrodeposited nanostructured ZnO on the electron transfer process efficiency of TiO2 based DSSC. Mater. Sci. Semicond. Process 40, 285–292 (2015)

    Article  Google Scholar 

  5. J.J. Jiang, Z. Mu, H.M. Xing, Q.N. Wu, X.Z. Yue, Y.H. Lin, Insights into the synergetic effect for enhanced UV/visible-light activated photodegradation activity via Cu–ZnO photocatalyst. Appl. Surf. Sci. 478, 1037–1045 (2019)

    Article  ADS  Google Scholar 

  6. Q.L. Huang, J. Li, Enhanced photocatalytic and SERS properties of ZnO/Ag hierarchical multipods-shaped nanocomposites. Mater. Lett. 204, 85–88 (2017)

    Article  Google Scholar 

  7. S.Q. Song, C.H. Lu, X. Wu, S.J. Jiang, C.Z. Sun, Z.G. Le, Strong base g-C3N4 with perfect structure for photocatalytically eliminating formaldehyde under visible-light irradiation. Appl. Catal. B Environ. 227, 145–152 (2018)

    Article  Google Scholar 

  8. Y.M. Feng, Y.Z. Wang, M.Y. Li, S.S. Lv, W. Li, Z.C. Li, Novel visible light induced Ag2S/g–C3N4/ZnO nanoarrays heterojunction for efficient photocatalytic performance. Appl. Surf. Sci. 462, 896–903 (2018)

    Article  ADS  Google Scholar 

  9. B. Gerislioglu, A. Ahmadivand, J. Adam, Infrared plasmonic photodetectors: the emergence of high photon yield toroidal metadevices. Mater. Today Chem. 14, 100206 (2019)

    Article  Google Scholar 

  10. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors. Nanoscale 11, 13108–13116 (2019)

    Article  Google Scholar 

  11. B. Gerislioglu, A. Ahmadivand, Function charge transfer plasmon metadevices. Research 2020, Article ID 9468692 (2020)

    Article  Google Scholar 

  12. J.F. Jin, W.Y. Liu, W.Y. Zhang, Q.H. Chen, Y.B. Yuan, L.D. Yang, Q.T. Wang, Nano-ZnO/ZnO–HAPw prepared via sol–gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections. J. Nanopart. Res. 16, 2658 (2014)

    Article  ADS  Google Scholar 

  13. H.Y. Song, K.B. Ko, B.D. Ryu, T.V. Cuong, C.H. Hong, Nanostructural effect of ZnO on light extraction efficiency of near-ultraviolet light-emitting diodes. J. Nanomater. 2016, 1–6 (2016)

    Article  Google Scholar 

  14. H. Frankenstein, C.Z. Leng, M.D. Losego, G.L. Frey, Atomic layer deposition of ZnO electron transporting layers directly onto the active layer of organic solar cell. Org. Electron. 64, 37–46 (2019)

    Article  Google Scholar 

  15. K.S. Choi, S.P. Chang, Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes. Mater. Lett. 230, 48–52 (2018)

    Article  Google Scholar 

  16. X.L. Zhu, X.Z. Liang, P. Wang, Y. Dai, B.B. Huang, Porous Ag–ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: Insight into the role of Ag particles. Appl. Surf. Sci. 456, 493–500 (2018)

    Article  ADS  Google Scholar 

  17. T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, A. Varma, A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J. Nanopart. Res. 17, 288 (2015)

    Article  ADS  Google Scholar 

  18. K. Sahu, S. Choudhary, J. Singh, S. Kuriakose, R. Singhal, S. Mohapatra, Facile wet chemical synthesis of ZnO nanosheets: effects of counter ions on the morphological structural, optical and photocatalytic properties. Ceram. Int. (2019). https://doi.org/10.1016/j.surfin.2019.02.009

    Article  Google Scholar 

  19. F.C. Yu, B.L. Wang, H.L. Hu, H. Li, T.Y. Song, B.Y. Xu, L. He, H.Y. Duan, S. Wang, The photocatalytic properties of Al-doped ZnO nanotubes decorated with Cu2O nanoparticles. Phys. Status Solidi A Appl. Mater. Sci. 1300386, 1–8 (2019)

    Google Scholar 

  20. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens. Actuators B Chem. 292, 24–31 (2019)

    Article  Google Scholar 

  21. Z.M. Zou, X.Y. Yang, P. Zhang, Y.M. Zhang, X.X. Yan, R.M. Zhou, D. Liu, L. Xu, J.Z. Gui, Trace carbon-hybridized ZnS/ZnO hollow nanospheres with multi-enhanced visible-light photocatalytic performance. J. Alloys Compd. 775, 481–489 (2019)

    Article  Google Scholar 

  22. R. Wang, S. Chen, Y.H. Ng, Q. Gao, S. Yang, S. Zhang, F. Peng, Y. Fang, S. Zhang, ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.01.073

    Article  Google Scholar 

  23. N. Guy, M. Ozacar, Ag/Ag2CrO4 nano-particles modified on ZnO nanorods as an efficient plasmonic photocatalyst under visible light. J. Photochem. Photobiol. A Chem. (2018). https://doi.org/10.1016/j.jphotochem.2018.10.035

    Article  Google Scholar 

  24. B.L. Wang, F.C. Yu, H.S. Li, T.Y. Song, D.M. Nan, L. He, H.Y. Duan, S. Wang, X.X. Tang, The preparation and photocatalytic properties of Na doped ZnO porous film composited with Ag nano-sheets. Phys. E Low Dimens. Syst. Nanostruct. (2019). https://doi.org/10.1016/j.physe.2019.113712

    Article  Google Scholar 

  25. S.G. Yu, H.Y. Zhang, C. Chen, C.C. Lin, Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle. Sens. Actuators B Chem. 87, 526–534 (2019)

    Article  Google Scholar 

  26. J.G. Hou, S.Y. Cao, Y.Z. Wu, F. Liang, Y.F. Sund, Z.H. Lin, L.C. Sun, Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction. Nano Energy 32, 359–366 (2017)

    Article  Google Scholar 

  27. Z. Wei, Y.F. Liu, J. Wang, R.L. Zong, W.Q. Yao, J. Wang, Y.F. Zhu, Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. Nanoscale 7, 13943–13950 (2015)

    Article  ADS  Google Scholar 

  28. F.C. Yu, T.Y. Song, B.L. Wang, B.Y. Xu, H.S. Li, H.L. Hu, L. He, H.Y. Duan, S. Wang, The effects of intrinsic defects on the structural and optical properties in sol–gel synthesized ZnO thin film. Mater. Res. Express 6, 1–8 (2019)

    Google Scholar 

  29. X. Xu, X. Ding, X.L. Yang, P. Wang, S. Li, Z.X. Lu, H. Chen, Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study. J. Hazard. Mater. (2018). https://doi.org/10.1016/j.jhazmat.2018.10.063

    Article  Google Scholar 

  30. J. Maity, G. Bhattacharjee, B. Satpati, D. Sardar, M.K. Ghosalya, T. Bala, Dexterous route for synthesis of hollow spherical ZnO and ZnO–Ag nanocomposite with superior photocatalytic ability. Chem. Select 4(19), 5518–5526 (2019)

    Google Scholar 

  31. D.F. Xua, B. Cheng, W.K. Wang, C.J. Jiang, J.G. Yu, Ag2CrO4/g–C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 231, 368–380 (2018)

    Article  Google Scholar 

  32. Q. Ma, Y. Fang, Y. Liu, J.C. Song, X.H. Fu, H. Li, S.S. Chu, Y. Chen, Facile synthesis of ZnO morphological evolution with tunable growth habits: Achieving superior gas-sensing properties of hemispherical ZnO/Au heterostructures for trimethylamine. Phys E Low Dimens. Syst. Nanstruct. 106, 180–186 (2018)

    Article  ADS  Google Scholar 

  33. K.V. Anand, J.A. Kumar, P. Deb, S.M.S. Sekaran, K. Keerthana, S. Tamilselvan, J. Theerthagiri, K. Govindaraju, Photocatalytic degradation of rhodamine B dye using biogenic hybrid ZnO–MgO nanocomposites under visible light. Chem. Select 4, 5178–5184 (2019)

    Google Scholar 

  34. S. Faezeh, M. Fatemeh, S.N. Masoud, Silver chromate and silver dichromate nanostructures: sonochemical synthesis, characterization, and photocatalytic properties. Mater. Res. Bull. 48(6), 2084–2094 (2013)

    Article  Google Scholar 

  35. L.F. Zhu, D.Q. Huang, J.F. Ma, D. Wu, M.R. Yang, S. Komarneni, Fabrication of AgBr/Ag2CrO4 composites for enhanced visible-light photocatalytic activity. Ceram. Int. 41, 12509–12513 (2015)

    Article  Google Scholar 

  36. F.C. Yu, H.L. Hu, B.L. Wang, H.S. Li, T.Y. Song, B.Y. Xu, L. He, S. Wang, H.Y. Duan, Effects of Al doping on defect behaviors of ZnO thin film as a photocatalyst. Mater. Sci. Pol. 37(3), 437–445 (2019)

    Article  ADS  Google Scholar 

  37. J.J. Lin, S.T. Li, J.Q. He, L. Zhang, W.F. Liu, J.Y. Li, Zinc interstitial as a universal microscopic origin for the electrical degradation of ZnO-based varistors under the combined DC and temperature condition. J. Eur. Ceram. Soc. 37, 3535–3540 (2017)

    Article  Google Scholar 

  38. F. Khan, S.H. Baek, J.H. Kim, Influence of oxygen vacancies on surface charge potential and transportation properties of Al-doped ZnO nanostructures produced via atomic layer deposition. J. Alloys Compd. 709, 819–828 (2017)

    Article  Google Scholar 

  39. H. Takaki, S. Inoue, Y. Matsumura, Defects control in the synthesis of low-dimensional zinc oxide. Chem. Phys. Lett. 684, 113–116 (2017)

    Article  ADS  Google Scholar 

  40. K. Ravichandran, E. Sindhuja, Fabrication of cost effective g-C3N4 + Ag activated ZnO photocatalyst in thin film form for enhanced visible light responsive dye degradation. Mater. Chem. Phys. 221, 203–215 (2019)

    Article  Google Scholar 

  41. A. Akhundi, H.Y. Aziz, Ternary g-C3N4/ZnO/AgCl nanocomposites: synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant. Appl. Surf. Sci. 358, 261–269 (2015)

    Article  ADS  Google Scholar 

  42. F. Guo, W.L. Shi, W.H. Guan, H. Huang, Y. Liu, Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep. Purif. Technol. 173, 295–303 (2017)

    Article  Google Scholar 

  43. P. Mahsa, H.Y. Aziz, Ternary ZnO/AgBr/Ag2CrO4 nanocomposites with tandem n–n heterojunctions as novel visible-light-driven photocatalysts with excellent activity. Ceram. Int. 41(10), 14383–14393 (2015)

    Article  Google Scholar 

  44. X.J. Zou, Y.Y. Dong, S.J. Li, J. Ke, Y.B. Cui, Facile anion exchange to construct uniform AgX (X=Cl, Br, I)/Ag2CrO4 NR hybrids for efficient visible light driven photocatalytic activity. Sol. Energy 169, 392–400 (2018)

    Article  ADS  Google Scholar 

  45. J.F. Zhang, W.L. Yu, J.J. Liu, B.S. Liu, Illustration of high-active Ag2CrO4 photocatalyst from the first-principle calculation of electronic structures and carrier effective mass. Appl. Surf. Sci. 358, 457–462 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Entrustment of Scientific and Technological Projects by Enterprises and Institutions of China (LZSN-KJ-002, 2018040-G, ky2019047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucheng Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Nan, D., Wang, B. et al. Catalytic properties of the composite of La-doped ZnO nanorods and Ag2CrO4 nanoparticles. Appl. Phys. A 126, 482 (2020). https://doi.org/10.1007/s00339-020-03666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03666-4

Keywords

Navigation