Skip to main content
Log in

Effect of graphene nanoplatelets on structural, morphological, thermal, and electrical properties of recycled polypropylene/polyaniline nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recycled polypropylene/polyaniline/graphene nanoplatelets (rPP/PANI/GNPs) nanocomposites were fabricated via ultrasonic-assisted single-screw extruder at 150–170 °C with a rotating screw speed of 50 rpm. The ultrasonic wave frequency and power supply were kept constant at a frequency of 20 kHz and 6 kW, respectively. The composition of the polymer nanocomposites used in this study was 92 wt.% rPP and 8 wt.% PANI, denoted as rPP/PANI. The effects of GNPs loadings (0.5, 1.5, and 3.0 parts per hundred resin (phr)) on the structural, morphological, thermal, and electrical properties on the nanocomposites were systematically evaluated. The X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) showed the presence of GNPs characteristics at 26.5°, 42.40°, 54.51°, and interactions between GNPs and rPP/PANI nanocomposites at different GNPs loadings. The compatibility of GNPs in rPP/PANI nanocomposites was confirmed by the morphological study, which showed to an enhancement in the electrical properties of the nanocomposites. The results also showed that the incorporation of 3 phr GNPs into rPP/PANI nanocomposites resulted in a lower degree of crystallinity of about 20.8% and a higher electrical conductivity of about 4.1 × 10–1 S cm−1. The current work paves a way towards understanding how to effectively enhance the electrical conductivity of rPP/PANI nanocomposites using GNPs, leading to potential use in electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.G. Lee, S.W. Lee, J.H. Cho, J.Y. Jho, Improving dispersion and mechanical properties of polypropylene/graphene nanoplatelet composites by mixed solvent-assisted melt blending. Macromol. Res. 28, 1166–1173 (2020)

    Article  Google Scholar 

  2. J.Z. Liang, J.Z. Wang, G.C.P. Tsui, C.Y. Tang, Thermal properties and thermal stability of polypropylene composites filled with grapheme nanoplatelets. J. Thermoplast. Compos. Mater. 31(2), 246–264 (2018)

    Article  CAS  Google Scholar 

  3. A.L. Pang, H. Ismail, Tensile properties, water uptake and thermal properties of polypropylene/waste pulverized tire/kenaf (PP/WPT/KNF) composites. BioRes. 8(1), 806–817 (2013)

    Google Scholar 

  4. K. Zdiri, A. Elamri, M. Hamdaoui, O. Harzallah, N. Khenoussi, J. Brendle, Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chem. Lett. Rev. 11(3), 296–311 (2018)

    Article  CAS  Google Scholar 

  5. A.M. Rahnamol, J. Gopalakrishnan, Improved dielectric and dynamic mechanical properties of epoxy/polyaniline nanorod/in situ reduced grapheme oxide hybrid nanocomposites. Polym. Compos. 41(8), 2998–3013 (2020)

    Article  CAS  Google Scholar 

  6. S.H. Cho, M.K. Kim, J.S. Lee, J.S. Jang, Polypropylene/polyaniline nanofiber/reduced graphene oxide nanocomposite with enhanced electrical, dielectric, and ferroelectric properties for a high energy density capacitor. ACS Appl. Mater. Interfaces 7(40), 22301–22314 (2015)

    Article  CAS  Google Scholar 

  7. F.X. Perrin, C. Oueiny, Chapter 5-Polyaniline-based thermoplastic blends, ed. By P.M. Visakh, C.D. Pina, E. Falletta, (Elsevier, 2018), pp. 117–147

  8. M.E. Ali Mohsin, N.K. Shrivastava, A. Arsad, N. Basar, A. Hassan, The effect of pH on the preparation of electrically conductive and physically stable PANI/sago blend film via in situ polymerization. Front. Mater. 7(20), 1–11 (2020)

    Google Scholar 

  9. S. Paszkiewicz, A. Szymczyk, Z. Rosłaniec, Chapter 5-Graphene derivatives in semicrystalline polymer composites, ed. by A. Tiwari, M. Syvajarvi, (Scrivener Publishing LLC, 2016) pp. 145–146

  10. D.D. Yang, H.P. Xu, W. Yu, J.R. Wang, X.C. Gong, Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend. J. Mater. Sci. Mater. Electron. 28, 13006–13012 (2017)

    Article  CAS  Google Scholar 

  11. P.N. Khanam, M.A. AlMaadeed, M. Ouederni, E. Harkin-Jones, B. Mayoral, A. Hamilton, D. Sun, Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum 130, 63–71 (2016)

    Article  Google Scholar 

  12. M.A. Al-Saleh, A.A. Yussuf, S. Al-Enezi, R. Kazemi, M.T. Wahit, T. Al-Shammari, A. Al-Banna, Polypropylene/graphene nanocomposites: effects of gnp loading and compatibilizers on the mechanical and thermal properties. Mater. 12(23), 3924–3934 (2019)

    Article  CAS  Google Scholar 

  13. Y.F. Li, J.H. Zhu, S.Y. Wei, J.E. Ryu, L.Y. Sun, Z.H. Guo, Poly(propylene)/graphene nanoplatelet nanocomposites: melt rheological behaviour and thermal, electrical, and electronic properties. Macromol. Chem. Phys. 212(18), 1951–1959 (2011)

    Article  CAS  Google Scholar 

  14. B. Abad, I. Alda, P. Dıaz-Chao, H. Kawakami, A. Almarza, D. Amantia, D. Gutierrez, L. Aubouy, M. Martın-Gonzalez, Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J. Mater. Chem. A. 1(35), 10450–10457 (2013)

    Article  CAS  Google Scholar 

  15. N. Badi, S. Khasim, A.S. Roy, Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J. Mater. Sci. Mater. Electron. 27, 6249–6257 (2016)

    Article  CAS  Google Scholar 

  16. S. Khasim, Polyaniline-graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys. 12, 1073–1081 (2019)

    Article  Google Scholar 

  17. A.R. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, J. Yang, Effects of graphene nanoplatelet size and surface area on the ac electrical conductivity and dielectric constant of epoxy nanocomposites. Polym. 10(5), 477–493 (2018)

    Article  Google Scholar 

  18. T. Evgin, A. Turgut, G. Hamaoui, Z. Spitalsky, N. Horny, M. Micusik, M. Chirtoc, M. Sarikanat, M. Omastova, Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization. Beilstein J. Nanotechnol. 11, 167–179 (2020)

    Article  CAS  Google Scholar 

  19. A. Shubha, S.R. Manohara, Effect of graphene nanoplatelets concentration on optical, dielectric and electrical properties of poly(2-ethyl-2-oxazoline)-polyvinylpyrrolidone-graphene nanocomposites. J. Mater. Sci. Mater. Electron. 31, 16498–16510 (2020)

    Article  CAS  Google Scholar 

  20. M.R. Husin, A. Arsad, A. Hassan, O. Hassan, Influence of different ultrasonic wave on polymerization of polyaniline nanofiber. Appl. Mech. Mater. 618, 50–54 (2014)

    Article  Google Scholar 

  21. L. Altay, M. Atagur, K. Sever, I. Sen, T. Uysalman, Y. Seki, M. Sarikanat, Synergistic effects of graphene nanoplatelets in thermally conductive synthetic graphite filled polypropylene composite. Polym. Compos. 40(1), 277–287 (2019)

    Article  CAS  Google Scholar 

  22. U. Mehmood, H. Asghar, F. Babar, M. Younas, Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol. Energy 196, 132–136 (2020)

    Article  CAS  Google Scholar 

  23. B. Jiang, B. Peng, A. Zhu, C. Zhang, Y. Li, Eco-friendly synthesis of graphene nanoplatelets via a carbonation route and its reinforcement for polytetrafluoroethylene composites. J. Mater. Sci. 53, 626–636 (2018)

    Article  CAS  Google Scholar 

  24. S. Gutic, A.S. Dobrota, N. Gavrilov, M. Baljozovic, I.A. Pasti, S.V. Mentus, Surface charge storage properties of selected graphene samples in ph-neutral aqueous solutions of alkali metal chlorides-particularities and universalities. Int. J. Electrochem. Sci. 11, 8662–8682 (2016)

    Article  Google Scholar 

  25. I. Karacan, H. Benli, An X-ray diffraction study for isotactic polypropylene fibers produced with take-up speeds of 2500–4250 m/min. Tekstil Ve Konfeksiyon. 21, 201–209 (2011)

    Google Scholar 

  26. B.S. Rao, N. Maramu, E.V. Rao, N.S. Rao, K.R. Prasad, Deconvolution of x-ray diffraction spectrum of polypropylene. Res. Rev. J. Phys. 2(3), 1–4 (2018)

    Google Scholar 

  27. M. Zhang, X. Wang, T. Yang, P. Zhang, X. Wei, L. Zhang, H. Li, Polyaniline/graphene hybrid fibers as electrodes for flexible\supercapacitors. Synth. Met. 268, 116484 (2020)

    Article  CAS  Google Scholar 

  28. S. Palsaniya, H.B. Nemade, A.K. Dasmahapatra, Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode. Polym. 150, 150–158 (2018)

    Article  CAS  Google Scholar 

  29. M. Ahmadipour, M.J. Abu, M.F.A. Rahman, M.F. Ain, Z.A. Ahmad, Assessment of crystallite size and strain of CaCu3Ti4O12 prepared via conventional solid-state reaction. Micro. Nano. Lett. 11(3), 147–150 (2016)

    Article  CAS  Google Scholar 

  30. D. Zheng, H. Yang, F. Yu, B. Zhang, H. Cui, Effect of graphene oxide on the crystallization of calcium carbonate by C3S carbonation. Mater. 12, 2045–2054 (2019)

    Article  CAS  Google Scholar 

  31. I. Raut, M. Calin, Z. Vuluga, E. Alexandrescu, M.L. Arsene, V. Purcar, C.A. Nicolae, A.M. Gurban, M. Doni, L. Jecu, Comparative study on the behavior of virgin and recycled polyolefins–cellulose composites in natural environmental conditions. J. Compos. Sci. 3(2), 60–74 (2019)

    Article  CAS  Google Scholar 

  32. S.A. Stoian, A.R. Gabor, A.M. Albu, C.A. Nicolae, V. Raditoiu, D.M. Panaitescu, Recycled polypropylene with improved thermal stability and melt processability. J. Therm. Analy. Calorim. 138, 2469–2480 (2019)

    Article  CAS  Google Scholar 

  33. M. Kılıc, U. Alkan, Y. Karabul, H.B. Yamak, O. Icelli, The effects of PANI concentration on the mechanical properties of PP/PANI composites. AKU J. Sci. Eng. 18(2), 426–433 (2018)

    Article  Google Scholar 

  34. M.H.M. Moghadam, S. Sabury, M.M. Gudarzi, F. Sharif, Graphene oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. J. Polym. Sci. Part A Polym. Chem. 52(11), 1545–1554 (2014)

    Article  Google Scholar 

  35. M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswamid, Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5(39), 31039–31048 (2015)

    Article  CAS  Google Scholar 

  36. Q. Wang, Y.M. Wang, Q.G. Meng, T.L. Wang, W.H. Guo, G.H. Wu, L. You, Preparation of high antistatic HDPE/polyaniline encapsulated graphene nanoplatelet composites by solution blending. RSC Adv. 7(5), 2796–2803 (2017)

    Article  CAS  Google Scholar 

  37. O.A. Al-Hartomy, S. Khasim, A. Roy, A. Pasha, Highly conductive polyaniline/graphene nano-platelet composite sensor towards detection of toluene and benzene gases. Appl. Phys. A. 125, 12–20 (2019)

    Article  Google Scholar 

  38. M.S. Gumaan, Chromium improvements on the mechanical performance of a rapidly solidifed eutectic Sn-Ag alloy. J. Mater. Sci. Mater. Electron. 31, 10731–10737 (2020)

    Article  CAS  Google Scholar 

  39. Y.S. Jun, J.G. Um, G. Jiang, A. Yu, A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. eXPRESS Polym. Lett. 12(10), 885–897 (2018)

    Article  CAS  Google Scholar 

  40. E. Watt, M.A. Abdelwahab, M.R. Snowdon, A.K. Mohanty, H. Khalil, M. Misra, Hybrid biocomposites from polypropylene, sustainable biocarbon and graphene nanoplatelets. Sci. Rep. 10, 10714–10726 (2020)

    Article  CAS  Google Scholar 

  41. M.A. Yusof, N.H. Nor Rahman, S.Z. Sulaiman, A.H. Sofian, M.S.Z. Mat Desa, I. Izirwan, Development of low density polyethylene/graphene nanoplatelets with enhanced thermal properties. IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies, 6-9 (2018)

  42. I.M. Inuwa, A. Hassan, S.A. Shamsudin, Thermal properties, structure and morphology of graphene reinforced polyethylene terephthalate/polypropylene nanocomposites. Malays. J. Analy. Sci. 18(2), 466–477 (2014)

    Google Scholar 

  43. A.H. Mohamad, O.G. Abdullah, S.R. Saeed, Effect of very fine nanoparticle and temperature on the electric and dielectric properties of MC-PbS polymer nanocomposite films. Results Phys. 16, 102898–102906 (2020)

    Article  Google Scholar 

  44. J. Pionteck, Chapter 1- Introduction, Handbook of antistatics, ed. By J. Pionteck, G. Wypych, (Elsevier, 2017) pp. 1–15

  45. M.A. Tarawneh, S.A. Saraireh, R.S. Chen, S.H. Ahmad, M.A.M. Al-Tarawni, M. Al-Tweissi, L.J. Yu, Mechanical, thermal, and conductivity performances of novel thermoplastic natural rubber/graphene nanoplates/polyaniline composites. J. Appl. Polym. Sci. 137(28), 48873–48883 (2020)

    Article  CAS  Google Scholar 

  46. P. Modak, S.B. Kondawar, D.V. Nandanwar, Synthesis and characterization of conducting polyaniline/grapheme nanocomposites for electromagnetic interference shielding. Procedia Mater. Sci. 10, 588–594 (2015)

    Article  CAS  Google Scholar 

  47. D.R. Dhakal, P. Lamichhane, K. Mishra, T.L. Nelson, R.K. Vaidyanathan, Influence of graphene reinforcement in conductive polymer: synthesis and characterization. Polym. Adv. Technol. 30(9), 2172–2182 (2019)

    Article  CAS  Google Scholar 

  48. B. Krause, P. Rzeczkowski, P. Potschke, Thermal conductivity and electrical resistivity of melt-mixed polypropylene composites containing mixtures of carbon-based fillers. Polym. 11(6), 1073–1087 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Teknologi Malaysia for the research Grants (R.J130000.7751.4J497, R.J130000.7844.4F288, and Q. J130000.21A2.05E25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agus Arsad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, A.L., Husin, M.R., Arsad, A. et al. Effect of graphene nanoplatelets on structural, morphological, thermal, and electrical properties of recycled polypropylene/polyaniline nanocomposites. J Mater Sci: Mater Electron 32, 9574–9583 (2021). https://doi.org/10.1007/s10854-021-05620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05620-3

Navigation