Skip to main content
Log in

Effect of Sr-substitution on structure, dielectric relaxation and conduction phenomenon of BaTiO3 perovskite material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 24 April 2021

This article has been updated

Abstract

In this paper, we investigated the impact of the substitution of barium (Ba) by strontium (Sr) in site A of the BaTiO3 perovskite lattice on physical properties. The studied materials were synthesized via the conventional solid-state method. Then, the purity and the crystallographic structure of the prepared materials were carried out at room temperature by X-ray powder diffraction (XRD) proving an orthorhombic system with a P4mm space group. Their morphology and the particle size were evaluated by scanning electron microscope (SEM) which shows a nanoparticle agglomeration of about 2.4 µm and 2.7 µm respectively for BT and BST samples. The investigation of the optical properties by Fourier transform infrared spectroscopy confirms the successful preparation of the perovskite materials. The study of the dielectric properties of ceramic materials performed by impedance spectroscopy in a frequency range [100-106 Hz] and temperature range [150−400 K] proves the appearance of the relaxation process in the modulus spectra after Sr substitution. The dc conductivity shows a VRH conduction process for both samples at lower temperatures and an SPH one at higher temperature with an increase in the activation energy for BT material and a decrease in the BST one. The ac conductivity data were described by Jonscher’s power law indicating a correlated barrier hopping (CBH) conduction process in the BT sample and an overlapping large polaron tunneling (OLPT) one for the BST compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Y. Chen, H. Qin, C. Shi, L. Li, J. Hu, RSC Adv. 5, 54710–54716 (2015)

    CAS  Google Scholar 

  2. S. Nasri, A. L. Ben Hafsia, M. Tabellout, M. Megdiche (2016) RSC Adv. 6: 76659–76665.

  3. I. Das, S. Chanda, S. Saha, A. Dutta, S. Banerjee, S. Bandyopadhyay, T.P. Sinha, RSC Adv. 6, 80415–80423 (2016)

    CAS  Google Scholar 

  4. R. Martınez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D: Appl. Phys. 44, 105302 (2011)

    Google Scholar 

  5. Y.C. Shin, S. Hashimoto, K. Yashiro, K. Amezawa, T. Kawada, ECS Trans. 72(7), 105–110 (2016)

    CAS  Google Scholar 

  6. P.M. Geffroy, S. Vedraine, F.D. Bouchiat, S.K. Saha, A. Gheno, F. Rossignol, P. Marchet, R. Antony, Electrical and Optical Properties of La 1–x AxFe1–yByO3−δ Perovskite Films (with A = Sr and Ca, and B= Co, Ga, Ti): Toward Interlayers for Optoelectronic Applications. J. Phys. Chem. C 120(50), 28583–28590 (2016)

    CAS  Google Scholar 

  7. N. Orlovskaya, K. Kleveland, T. Grande, M.A. Einarsrud, J. Eur. Ceram. Soc. 20, 51–56 (2000)

    CAS  Google Scholar 

  8. A.P. Sakhya, D.P. Rai, S.A. Dutta, R.K. Thapa, T.P. Sinha, RSC Adv. 6, 59988–59997 (2016)

    CAS  Google Scholar 

  9. N. Lee, Y. Lansac, H. Hwang, Y.H. Jang, RSC Adv. 5, 102772–102779 (2015)

    CAS  Google Scholar 

  10. T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, J. Electrochem. Soc. 142(5), 1519–1524 (1995)

    CAS  Google Scholar 

  11. J. Ravichandran, W. Siemons, H. Heijmerik, M. Huijbenx, A. Majumdar, R. Ramesh, Chem. Mater. 22, 3983–3987 (2010)

    CAS  Google Scholar 

  12. N. Erdenee, U. Enkhnaran, S. Galsan, A. Pagvajav, J. Nanomater. 2017, 9120586 (2017). https://doi.org/10.1155/2017/9120586

    Article  CAS  Google Scholar 

  13. Y. Wang, X. Wu, W. Zhang, W. Chen, Synthesis and electromagnetic properties of La-doped Ni–Zn ferrites. J. Magn. Magn. Mater. 398, 90–95 (2016)

    CAS  Google Scholar 

  14. C. Srinivas, B.V. Tirupanyam, D.L. Sastry, O.F. Caltun, Effect of Ni2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 382, 15–19 (2015)

    CAS  Google Scholar 

  15. R. Sahoo, S. Santra, C. Ray, S.K. Ray, T. Pal, New J. Chem. 40, 1861–1871 (2016)

    CAS  Google Scholar 

  16. D. Moitra, B.K. Ghosh, S.R. Vadera, N.N. Ghosh, RSC Adv. 6, 14090–14096 (2016)

    CAS  Google Scholar 

  17. P. Liu, Z. Yao, J. Zhou, RSC Adv. 5, 93739–93748 (2015)

    CAS  Google Scholar 

  18. V.F. Lvovich, Impedance Spectroscopy (John Wiley & Sons Inc, Applications to Electrochemical and Dielectric Phenomena, 2012).

    Google Scholar 

  19. N. Bonanos, B.C.H. Steele, E.P. Butler, Impedance Spectroscopy Theory, Experiment, and Applications (John Wiley & Sons, New Jersey, 2005).

    Google Scholar 

  20. P.C. Sati, M. Kumar, S. Chhoker, Ceram. Int. 41, 3227–3236 (2015)

    Google Scholar 

  21. P. Gogoi, P. Srinivas, P. Sharma, D. Pamu, J. Electron. Mater. 45, 899 (2016)

    CAS  Google Scholar 

  22. Z. Cao, X. Liu, W. He, X. Ruan, Y. Gao, J. Liu, Phys. B 477, 8–13 (2015)

    CAS  Google Scholar 

  23. I. Coondoo, N. Panwar, A. Tomar, A.K. Jha, S.K. Agarwal, Phys. B 407, 4712–4720 (2012)

    CAS  Google Scholar 

  24. R. Lefia, F. Ben Nasr, H. Hrichi and H. Guermazi, (2016) Optik, 127: 5534–5541

  25. M.M. Vijatovic, History and Challenges of Barium Titanate Part II. J. Sci. Sinter. 40, 235–244 (2008)

    CAS  Google Scholar 

  26. A. Ianculescu et al., Investigation of Ba1− xSrx TiO3 ceramics prepared from powders synthesized by the modified Pechini route. J Eur Ceram Soc 27(13), 3655–3658 (2007)

    CAS  Google Scholar 

  27. H. Wang, F. Xiang, K. Li, Ceramic Polymer Ba0.6Sr04TiO3/Poly Methyl Methacrylate Composites with Different Type Composite Structures for Electronic Technology. Int J Appl Ceram Technol 7(4), 435–443 (2010)

    CAS  Google Scholar 

  28. Q. Zhang, J. Zhai, B. Shen, H. Zhang, X. Yao, Grain size effects on dielectric properties of barium strontium titanate composite ceramics. Mater Res Bull 48(3), 973–977 (2013)

    CAS  Google Scholar 

  29. G.X. Hu, F. Gao, X. Cao, L.L. Liu, Microstructure and dielectric properties of Ba0.6Sr0.4TiO3 ceramics co-doped Al2O3-MgO. Mater. Sci. Forum 687, 327–332 (2011)

    CAS  Google Scholar 

  30. S. Chao, F. Dogan, BaTiO3–SrTiO3 layered dielectrics for energy storage. Mater Lett 65(6), 978–981 (2011)

    CAS  Google Scholar 

  31. M. Tanaka, K. Abe, H. Itoh, J. Takahashi, Fabrication and Dielectric Properties of (Ba0.7Sr0.3) TiO3. Glass Composites. Jpn J Appl Phys 50(9), 1–7 (2011)

    Google Scholar 

  32. L. Tang, J. Wang, J. Zhai, L.B. Kong, X. Yao, Controllable-permittivity and high tunability of Ba0.5Sr0.5TiO3/MgO based ceramics by composite configuration. Appl Phys Lett 102(14), 142907 (2013)

    Google Scholar 

  33. T. Hu, J. Juuti, H. Jantunen, RF properties of BST–PPS composites. J Eur Ceram Soc 27(8), 2923–2926 (2007)

    CAS  Google Scholar 

  34. Z J Yue, K Zhao, H Ni, S Q Zhao2, Y C Kong, H K Wong and A J Wang, Photo-induced magnetoresistance enhancement in manganite heterojunction at room temperature. J. Phys. D: Appl. Phys. 44 (2011) 095103 (4pp),

  35. A. Guinier, in Theorie et Technique de la radiocristallographie, ed. By X. Dunod, 3rd edn (1964), p. 462

  36. U. Megha, K. Shijina, G. Varghese, Nanosized LaCo0.6Fe0.4O3 perovskites synthesized by citrate sol gel auto combustion method, Process. Appl. Ceram. 2, 87–92 (2014)

    Google Scholar 

  37. Y. Zhang, C. Yao, Y. Fan, M. Zhou, One-step hydrothermal synthesis, characterization, and magnetic properties of orthorhombic PrCrO3 cubic particles. Mater. Res. Bull. 59, 387–393 (2014)

    CAS  Google Scholar 

  38. H.Z. AKBAS,Z. AYDIN,I.H. KARAHAN,T. DILSIZOGLU and S. TURGUT, 17th Research World International Conference, 2016,11, 27–30.

  39. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton Trans. 44, 10457 (2015)

    CAS  Google Scholar 

  40. Lily, K. Kumari, K. Prasad, and R. N. P. Choudhary, J. Alloys Compd., 2008, 453, 325.

  41. L.H. Omari, R. Moubah, M. Haddad, J. Mat. Chem. Phys. 192, 138 (2017)

    Google Scholar 

  42. M. Idress, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    Google Scholar 

  43. H. Nyquist, Bell Syst. Tech. J. 11, 126 (1932)

    Google Scholar 

  44. Y.D. Kolekar, L.J. Sanchez, C.V. Raman, J. Appl. Phys. 115, 144106 (2014)

    Google Scholar 

  45. P.P. Hankare, U.B. Sankpal, R.P. Patil, A.V. Jadhav, K.M. Garadkar, B.K. Chougule, Magnetic and dielectric studies of nanocrystalline zinc substituted Cu–Mn ferrites. J. Magn. Magn. Mater. 323(5), 389–393 (2011)

    CAS  Google Scholar 

  46. R. Kannan, S. Rajagopan, A. Arunkumar, D. Vanidha, R. Murugaraj, Unusual metallic behavior in nanostructured cobalt ferrite at superparamagnetic regime. J. Appl. Phys. 112(6), 063926 (2012)

    Google Scholar 

  47. K.M. Batoo, S. Kumar, C.G. Lee, Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr. Appl. Phys. 9(1397), 1406 (2009)

    Google Scholar 

  48. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    CAS  Google Scholar 

  49. C. Bharti, T.P. Sinha, J. Solid State Sci. 12, 498 (2010)

    CAS  Google Scholar 

  50. J. Liu, Ch-G Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)

  51. J.S. Kim, J. Phys. Soc. Jpn. 70, 3129 (2001)

    CAS  Google Scholar 

  52. A. Dutta, T.P. Sinha, J. Physica B 405, 1475 (2010)

    CAS  Google Scholar 

  53. M. BakrMohamed, H. Wang, H. Fuess, J. Phys. D: Appl. Phys. 43, 455409 (2010)

    Google Scholar 

  54. J.R. Macdonald, Note on the parameterization of the constantphase admittance element. Solid State Ion. 13, 147 (1984)

    CAS  Google Scholar 

  55. J.R. Macdonald, Note on the parameterization of the constant phase admittance element. Solid State Ion. 13, 147 (1984)

    CAS  Google Scholar 

  56. K. S. Rao, D. M. Prasad, P. M. Krishna, B. Tilak, and K. C. Varadarajulu, Mater. Sci. Eng., B, 2006, 133, 141.

  57. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).

    Google Scholar 

  58. R.M. Hill, Phys. Stat. Solidi A 34, 601–613 (1976)

    CAS  Google Scholar 

  59. A. Osak, Ferroelectrics 418, 52–59 (2011)

    CAS  Google Scholar 

  60. S. Yoshioka, S. Tajima, Y. Aso, S. Kojima, Pharm. Res. 20, 1655 (2003)

    CAS  Google Scholar 

  61. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New York, 2005), p. 14

    Google Scholar 

  62. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ion. 146, 329 (2002)

    CAS  Google Scholar 

  63. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996).

    Google Scholar 

  64. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).

    Google Scholar 

  65. A. Dhahri, F.I.H. Rhou, J. Dhahri, E. Dhahri, M.A. Valente, Solid State Commun. 15, 738 (2011)

    Google Scholar 

  66. A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, J. Alloys Compd. 653, 506 (2015)

    CAS  Google Scholar 

  67. M. Ben Bechir, K. Karoui, M. Tabellout, K. Guidara, A. Ben Rhaiem, Electric and dielectric studies of the [N(CH3)3H]2CuCl4 compound at low temperature. J. Alloy. Comp. 588, 551–557 (2014)

    CAS  Google Scholar 

  68. S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    CAS  Google Scholar 

  69. A. Ghosh, Phys. Rev. B 42, 1388 (1990)

    CAS  Google Scholar 

  70. A.R. Long, Adv. Phys. 31, 553 (1982)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafik Moussi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussi, R., Bougoffa, A., Trabelsi, A. et al. Effect of Sr-substitution on structure, dielectric relaxation and conduction phenomenon of BaTiO3 perovskite material. J Mater Sci: Mater Electron 32, 11453–11466 (2021). https://doi.org/10.1007/s10854-021-05604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05604-3

Navigation