Skip to main content
Log in

Structural and dielectric properties of Sr substituted BaTi0.8Zr0.2O3 perovskite synthesized via solid state reaction route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Perovskite type Ba1−xSrxZr0.2Ti0.8O3 (with x = 0.0, 0.1, 0.2 and 0.3) ceramics have been synthesized through conventional two-step solid-state reaction method. The structural characterization was done using an X-ray diffraction study. All the compositions reveal a single-phase cubic structure. The dielectric measurements were taken at various temperatures (100 to 300 K) and various frequencies (1 to 500 kHz) for all the prepared compositions. This study reveals that the Ba1−xSrxTi0.8Zr0.2O3 (with x = 0.0, 0.1, 0.2 and 0.3) composition does not transform from normal ferroelectric to relaxor ferroelectric. The diffusivity enhances with increment in Sr concentration in the present composition range. It is observed that with enhancement in Sr content, the transition temperature decreases for all the studied compositions. The decrease in transition temperature may occur due to introducing a smaller ionic radius of Sr2+ at the site of a larger ionic radius of Ba2+. The morphological properties of all the samples are analyzed using scanning electron microscopy images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T. Badapanda et al., Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling. J. Alloy. Compd. 645, 586–596 (2015)

    Google Scholar 

  2. A. Rached et al., Structural, optical and electrical properties of barium titanate. Mater. Chem. Phys. 267, 124600 (2021)

    Google Scholar 

  3. M. Arshad et al., Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceram. Int. 46(2), 2238–2246 (2020)

    Google Scholar 

  4. M.B. Chamekh et al., Structural and electrical characterization of strontium doped barium titanate for radiometric measurement. Chem. Phys. Lett. 761, 138008 (2020)

    Google Scholar 

  5. T. Zaman et al., Mono and co-substitution of Sr2+ and Ca2+ on the structural, electrical and optical properties of barium titanate ceramics. Ceram. Int. 45(8), 10154–10162 (2019)

    Google Scholar 

  6. R. Ma et al., The energy storage properties of fine-grained Ba0.8Sr0.2Zr0.1Ti0.9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings. Mater. Res. Bull. 111, 311–319 (2019)

    Google Scholar 

  7. Q. Jin et al., Designing high energy storage performance BSZT-KNN ceramics. Ceram. Int. 47, 20617–20625 (2021)

    Google Scholar 

  8. S.A.K.M. Tadigadapa, Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20(9), 092001 (2009)

    ADS  Google Scholar 

  9. K. Uchino, Piezoelectrics and Ultrasonic Applications (Kluwer, Deventer, 1998)

    Google Scholar 

  10. A. Safari, R. Panda, V. Janas, Ferroelectricity: materials, characteristics & applications, in Key Engineering Materials. (Trans Tech Publication, Zürich, 1996)

    Google Scholar 

  11. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  12. Y. Xu, Ferroelectric Materials and Their Applications (Elsevier, Amsterdam, 2013)

    Google Scholar 

  13. S. Pradhan, S. Das, S. Bhuyan, Structural, morphological and dielectric features of neodymium doped BiFeO3-PbTiO3 electronic system. Mater. Today Proc. 35, 73–75 (2021)

    Google Scholar 

  14. K.V. Saravanan et al., Effect of the amorphous-to-crystalline transition in Ba0.5Sr0.5TiO3 thin films on optical and microwave dielectric properties. J. Phys. D Appl. Phys. 42(4), 045401 (2009)

    ADS  Google Scholar 

  15. J. Liu et al., Influence of Sr ions on the structure and dielectric properties of Cu/Nb Co-doped BaTiO3 ceramics. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.199

    Article  Google Scholar 

  16. R. Verma et al., Structural, morphological, and optical properties of strontium doped lead-free BCZT ceramics. Ceram. Int. 47(11), 15442–15457 (2021)

    Google Scholar 

  17. F. Toma et al., study of the structural, electrical and magnetic properties of calcium (Ca) and strontium (Sr) substituted barium titanate (BaTiO3) ceramics. J. Ceram. Process. Res. 18(10), 701–710 (2017)

    Google Scholar 

  18. H.-H. Huang et al., Evaluation on Structure Modification and Properties of (Ba1-xSrx)(Ti1-y Zry) O3 Ceramics by Using Rietveld Method (INTECH Open Access Publisher, London, 2011)

    Google Scholar 

  19. A. Von Hippel, Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 22(3), 221 (1950)

    ADS  Google Scholar 

  20. J. Moon et al., Formation mechanisms and morphological changes during the hydrothermal synthesis of BaTiO 3 particles from a chemically modified, amorphous titanium (hydrous) oxide precursor. J. Eur. Ceram. Soc. 23(12), 2153–2161 (2003)

    Google Scholar 

  21. T. Hyeon et al., synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J. Phys. Chem. B 106(27), 6831–6833 (2002)

    Google Scholar 

  22. C.A.A.B. Stenger, Study of phase transitions and properties of tetragonal (Pb, La)(Zr, Ti) O3 ceramics—II: diffuse phase transitions and thermodynamics. J. Phys. Chem. Solids 41(1), 25–30 (1980)

    ADS  Google Scholar 

  23. V. Lemanov et al., Phase transitions and glasslike behavior in Sr 1–x Ba x TiO 3. Phys. Rev. B 54(5), 3151 (1996)

    ADS  Google Scholar 

  24. G. Kwei et al., Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. B 97(10), 2368–2377 (1993)

    Google Scholar 

  25. R. Nettleton, Ferroelectric phase transitions: a review of theory and experiment. Part 3—neutron scattering. Ferroelectrics 1(1), 93–101 (1970)

    Google Scholar 

  26. T. Badapanda et al., Frequency and temperature dependence dielectric study of strontium modified Barium Zirconium Titanate ceramics obtained by mechanochemical synthesis. J. Mater. Sci.: Mater. Electron. 26(5), 3069–3082 (2015)

    Google Scholar 

  27. W.J. Merz, Domain formation and domain wall motions in ferroelectric BaTi O 3 single crystals. Phys. Rev. 95(3), 690 (1954)

    ADS  Google Scholar 

  28. T. Maiti, R. Guo, A. Bhalla, Structure-property phase diagram of BaZrxTi1− xO3 system. J. Am. Ceram. Soc. 91(6), 1769–1780 (2008)

    Google Scholar 

  29. Z. Yu et al., Piezoelectric and strain properties of Ba (Ti1-xZrx) O3 ceramics. J. Appl. Phys. 92, 1489–1493 (2002)

    ADS  Google Scholar 

  30. T. Badapanda et al., Ferroelectric phase transition of Ba1− x Sr x Ti0. 6Zr0. 4O3 ceramics. Phase Transitions 81(10), 897–906 (2008)

    Google Scholar 

  31. K.A.Y. Kinoshita, Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47(1), 371–373 (1976)

    ADS  Google Scholar 

  32. G.A.F.D. Burns, Ferroelectrics with a glassy polarization phase. Ferroelectrics 104(1), 25–35 (1990)

    Google Scholar 

  33. M. El Hiti, Dielectric behaviour in Mg–Zn ferrites. J. Magn. Magn. Mater. 192(2), 305–313 (1999)

    ADS  Google Scholar 

  34. S. Raut et al., Grain boundary-dominated electrical conduction and anomalous optical-phonon behaviour near the Neel temperature in YFeO3 ceramics. J. Appl. Phys. 123(17), 174101 (2018)

    ADS  Google Scholar 

  35. V.A. Hiremath, A. Venkataraman, Dielectric, electrical and infrared studies of γ-Fe 2 O 3 prepared by combustion method. Bull. Mater. Sci. 26(4), 391–396 (2003)

    Google Scholar 

  36. N. Kumari, V. Kumar, S. Singh, Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nano-particles. Ceram. Int. 40(8), 12199–12205 (2014)

    Google Scholar 

  37. J. Scott, Applications of modern ferroelectrics. Science 315(5814), 954–959 (2007)

    ADS  Google Scholar 

  38. V.A.V.I. Kirillov, Relaxation polarization of PbMg 1/3Nb2/3O3 (PMN)-A ferroelectric with a diffused phase transition. Ferroelectrics 5(1), 3–9 (1973)

    Google Scholar 

  39. L. Zhou, P. Vilarinho, J. Baptista, Dependence of the structural and dielectric properties of Ba 1–x Sr x TiO 3 ceramic solid solutions on raw material processing. J. Eur. Ceram. Soc. 19(11), 2015–2020 (1999)

    Google Scholar 

  40. R. Wang, Y. Inaguma, M. Itoh, Dielectric properties and phase transition mechanisms in Sr 1–x Ba x TiO 3 solid solution at low doping concentration. Mater. Res. Bull. 36(9), 1693–1701 (2001)

    Google Scholar 

  41. W.A.L.S. Chang, MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications. J. Appl. Phys. 92(7), 3941–3946 (2002)

    ADS  Google Scholar 

  42. S.B. Reddy, K.P. Rao, M.R. Rao, Structural and dielectric characterization of Sr substituted Ba (Zr, Ti) O3 based functional materials. Appl. Phys. A 89(4), 1011–1015 (2007)

    ADS  Google Scholar 

  43. A. Bell, Calculations of dielectric properties from the superparaelectric model of relaxors. J. Phys.: Condens. Matter 5(46), 8773 (1993)

    ADS  Google Scholar 

  44. J.-H. Jeon, Effect of SrTiO 3 concentration and sintering temperature on microstructure and dielectric constant of Ba 1–x Sr x TiO 3. J. Eur. Ceram. Soc. 24(6), 1045–1048 (2004)

    Google Scholar 

  45. B.A.T.B. Su, Microstructure and dielectric properties of Mg-doped barium strontium titanate ceramics. J. Appl. Phys. 95, 1382–1385 (2004)

    ADS  Google Scholar 

  46. T. Badapanda et al., Relaxor behaviour of (Ba0· 5Sr0· 5)(Ti0· 6Zr0· 4) O3 ceramics. Bull. Mater. Sci. 31(6), 897–901 (2008)

    Google Scholar 

  47. S. Singh, S.P. Singh, D. Pandey, A succession of relaxor ferroelectric transitions in Ba0.55Sr0.45TiO3. J. Appl. Phys. 103(1), 6107 (2008)

    ADS  Google Scholar 

  48. H. Naceur, A. Megriche, M. El Maaoui, Frequency-dependant dielectric characteristics and conductivity behavior of Sr1− x (Na0. 5Bi0. 5) xBi2Nb2O9 (x= 0.0, 0.2, 0.5, 0.8 and 1.0) ceramics. Oriental J. Chem. 29(3), 937–944 (2013)

    Google Scholar 

  49. V.S.A.D.P. Tiwari, Structure and properties of (Ba, Ca) TiO3 ceramics prepared using (Ba, Ca) CO3 precursors: II, diffuse phase transition behavior. J. Am. Ceram. Soc. 77(7), 1819–1824 (1994)

    Google Scholar 

  50. S.C. Tidrow, Mapping comparison of Goldschmidt’s tolerance factor with Perovskite structural conditions. Ferroelectrics 470(1), 13–27 (2014)

    Google Scholar 

  51. H. Sekrafi et al., Structural, electrical, dielectric properties and conduction mechanism of sol-gel prepared Pr0. 75Bi0. 05Sr0. 1Ba0. 1Mn0. 98Ti0. 02O3 compound. Mater. Res. Bull. 111, 329–337 (2019)

    Google Scholar 

  52. R. Mguedla et al., Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. J. Alloy. Compd. 812, 152130 (2020)

    Google Scholar 

  53. R. Mguedla et al., Gd doping effect on structural, electrical and dielectric properties in HoCrO3 orthochromites for electric applications. J. Alloy. Compd. 836, 155186 (2020)

    Google Scholar 

  54. H. Sekrafi et al., Impact of low titanium concentration on the structural, electrical and dielectric properties of Pr 0.75 Bi 0.05 Sr 0.1 Ba 0.1 Mn 1− x Ti x O 3 (x= 0, 0.04) compounds. J. Mater. Sci Mater. Electron. 30(1), 876–891 (2019)

    Google Scholar 

  55. A. Bokov et al., Dielectric behavior of Ba (Ti1− xZrx) O3 solid solution. Ferroelectrics 337(1), 169–178 (2006)

    Google Scholar 

  56. A.O. Turky et al., Achieving exceedingly constructional characterization of magnesia-yttria (MgO-Y2O3) nanocomposite obtained via oxalate precursor strategy. Measurement 150, 106888 (2020)

    Google Scholar 

  57. A. Jain et al., Improvement in dielectric, ferroelectric and ferromagnetic characteristics of Ba0.9Sr0.1Zr0.1Ti0.9O3-NiFe2O4 composites. Ceram. Int. 43(13), 10253–10262 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Adil Mahmood or Muhammad Azhar Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, Z., Rehman, J., Rehman, F.U. et al. Structural and dielectric properties of Sr substituted BaTi0.8Zr0.2O3 perovskite synthesized via solid state reaction route. Appl. Phys. A 128, 472 (2022). https://doi.org/10.1007/s00339-022-05619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05619-5

Keywords

Navigation