Skip to main content
Log in

Bio-inspired metastable intermolecular nanothermite composite based on Manganese dioxide/Polydopamine/Aluminium

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Surface engineering of energetic particles can offer significant applications; the emergence of surface modification with polydopamine (PDA) can propose novel material science. Even though, nanothermites (metal oxide/metal) can offer surplus heat output; the reaction rate is comparatively-low as it is limited to the interplaner distance between particles. Intimate mixing between metal oxide/metal could be accomplished via surface modification. This study reports on the facile synthesis of MnO2 nanoparticles (NPs) of 5 nm average particle size. On the other hand, Al NPs in the shape of plates of 100 nm particle size were employed. Surface modification of Al NPs with PDA was conducted via in situ polymerization. Colloidal MnO2 NPs integrated into PDA/Al during the polymerization process. DPA layer was effectively-deposited on the aluminium surface and effectively-anchored MnO2 NPs. SEM micrographs of developed MnO2/PDA/Al nanocomposite demonstrated the successful bonding of MnO2 to Al surface via strong PDA chemical bonding. From FTIR spectra, the sharp peaks at 1544 cm−1 and 1389 cm−1 attributed to the C=O and C–O bonds, respectively, and could be due to bond formation between Mn and oxygen in C=O, and C–O in PDA. The developed MnO2/PDA/Al demonstrated the uniform distribution of MnO2 NPs on Al nano-plates. This work dropped the light toward the green production of novel nanothermite hybrid with durable chemical bonding. MnO2/PDA/Al hybrid can offer superior combustion characteristics with intimate mixing between the oxidizer and metal fuel to the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adopted from reference [39]

Fig. 2

Adopted from References [38, 40]

Fig. 3

Adopted from reference [54]

Fig. 4

Adopted from reference [54]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Elkodous et al., Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1−xFe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci. 30, 8312–8328 (2019)

    CAS  Google Scholar 

  2. M. Abd Elkodous et al., Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B 180, 411–428 (2019)

    CAS  Google Scholar 

  3. M.S. Attia et al., Spirulina platensis-polysaccharides promoted green silver nanoparticles production using gamma radiation to suppress the expansion of pear fire blight-producing Erwinia amylovora. J. Clust. Sci. 30, 919 (2019)

    CAS  Google Scholar 

  4. A.I. El-Batal et al., Potential nematicidal properties of silver boron nanoparticles: synthesis, characterization, in vitro and in vivo root-knot nematode (Meloidogyne incognita) treatments. J. Clust. Sci. 30(3), 687–705 (2019)

    CAS  Google Scholar 

  5. W.F. Khalil et al., Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria. Int. J. Biol. Macromol. 164, 1370–1383 (2020)

    CAS  Google Scholar 

  6. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2017)

    Google Scholar 

  7. X. Huang, M.A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1(1), 13–28 (2010)

    Google Scholar 

  8. X.-F. Zhang et al., Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016)

    Google Scholar 

  9. J. Valíček et al., Quantifying the mechanical properties of materials and the process of elastic-plastic deformation under external stress on material. Materials (Basel, Switzerland) 8(11), 7401–7422 (2015)

    Google Scholar 

  10. M. Fasano et al., Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes. Nat. Commun. 7, 12762–12762 (2016)

    CAS  Google Scholar 

  11. S. Asiya et al., Reliable optoelectronic switchable device implementation by CdS nanowires conjugated bent-core liquid crystal matrix. Org. Electron. 82, 105592 (2020)

    CAS  Google Scholar 

  12. K. Pal et al., Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit. Rev. Solid State Mater. Sci. (2020). https://doi.org/10.1080/10408436.2020.1805295

    Article  Google Scholar 

  13. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. 31(20), 17332–17338 (2020)

    Google Scholar 

  14. M. Ghodrati, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Zn3V3O8 nanostructures: facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram. Int. 46(18), 28894–28902 (2020)

    CAS  Google Scholar 

  15. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46(17), 26548–26556 (2020)

    CAS  Google Scholar 

  16. S. Zinatloo-Ajabshir et al., Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. Int. J. Hydrog. Energy 44(36), 20110–20120 (2019)

    CAS  Google Scholar 

  17. M.A. Maksoud et al., Nanostructured Mg substituted Mn-Zn ferrites: a magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. J. Hazard. Mater. 399, 123000 (2020)

    Google Scholar 

  18. M. Abd Elkodous et al., Carbon-dot-loaded CoxNi1–xFe2O4; x= 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Sci. Rep. 10(1), 1–22 (2020)

    Google Scholar 

  19. M. Abd Elkodous et al., Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J. Hazard. Mater. 124, 124657 (2020)

    Google Scholar 

  20. S.A. Heidari-Asil et al., Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrog. Energy 45(43), 22761–22774 (2020)

    CAS  Google Scholar 

  21. M.I.A.A. Maksoud et al., Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    CAS  Google Scholar 

  22. M. Abd Elkodous et al., Fabrication of ultra-pure anisotropic zinc oxide nanoparticles via simple and cost-effective route: implications for UTI and EAC medications. Biol. Trace Elem. Res. 196(1), 297–317 (2019)

    Google Scholar 

  23. M. Abd Elkodous et al., Engineered nanomaterials as potential candidates for HIV treatment: between opportunities and challenges. J. Clust. Sci. 30(3), 531–540 (2019)

    CAS  Google Scholar 

  24. A.I. El-Batal et al., Gum Arabic polymer-stabilized and Gamma rays-assisted synthesis of bimetallic silver-gold nanoparticles: Powerful antimicrobial and antibiofilm activities against pathogenic microbes isolated from diabetic foot patients. Int. J. Biol. Macromol. 165, 169–186 (2020)

    CAS  Google Scholar 

  25. S. Zinatloo-Ajabshir et al., Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 71, 105376 (2021)

    CAS  Google Scholar 

  26. Y. Wang, Y. Xia, Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 4(10), 2047–2050 (2004)

    CAS  Google Scholar 

  27. S. Verma, R. Gokhale, D. Burgess, A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharmaceut. 380, 216–222 (2009)

    CAS  Google Scholar 

  28. M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J. Mater. Sci.: Mater. Electron. 27(11), 11698–11706 (2016)

    CAS  Google Scholar 

  29. M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, New facile synthesis, structural and photocatalytic studies of NdOCl-Nd2Sn2O7-SnO2 nanocomposites. J. Mol. Liq. 220, 902–909 (2016)

    CAS  Google Scholar 

  30. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Nd2O3-SiO2 nanocomposites: A simple sonochemical preparation, characterization and photocatalytic activity. Ultrason. Sonochem. 42, 171–182 (2018)

    CAS  Google Scholar 

  31. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. B Eng. 167, 643–653 (2019)

    CAS  Google Scholar 

  32. Nie, H.-q., et al., Combustion characteristic and aging behavior of bimetal thermite powders. Defence Technology, 2020.

  33. Elbasuney, S., et al., Super-thermite (Al/Fe2O3) fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mat. 28, 2231–2240 (2018)

    CAS  Google Scholar 

  34. S. Elbasuney, M. Yehia, Ferric Oxide Colloid: A Novel Nano-catalyst for Solid Propellants. J. Inorg. Organomet. Polym Mater. 30(3), 706–713 (2020)

    CAS  Google Scholar 

  35. S. Elbasuney et al., Multi-component nanocomposite infrared flare with superior infrared signature via synergism of nanothermite and reduced graphene oxide. J. Mater. Sci.: Mater. Electron. 31(14), 11520–11526 (2020)

    CAS  Google Scholar 

  36. S. Elbasuney et al., Novel nanocomposite decoy flare based on super-thermite and graphite particles. J. Mater. Sci.: Mater. Electron. 31(8), 6130–6139 (2020)

    CAS  Google Scholar 

  37. Tantawy, H., et al., Synergism of nanothermite and nanophosphrous compound for advanced infrared flares with superior spectral performance. Journal of Energetic Materials, 2020: p. 1–14.

  38. S. Elbasuney et al., Novel High Energy Density Material Based on Metastable Intermolecular Nanocomposite. J. Inorg. Organomet. Polym Mater. 30(10), 3980–3988 (2020)

    CAS  Google Scholar 

  39. K.P. Ruggirello et al., A reaction progress variable modeling approach for non-ideal multiphase explosives. Int. J. Multiph. Flow 42, 128–151 (2012)

    CAS  Google Scholar 

  40. ZARKO, V.E. and A.A. GROMOV, eds. ENERGETIC NANOMATERIALS Synthesis, Characterization, and Application. 2016, Elsevier: Amsterdam.

  41. D. Spitzer et al., Energetic nano-materials: Opportunities for enhanced performances. J. Phys. Chem. Solids 71(2), 100–108 (2010)

    CAS  Google Scholar 

  42. Elbasuney, S. and M. Yehia, Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Defence Technology, 2019.

  43. S. Elbasuney, M. Yehia, Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Defence Technology 15(6), 868–874 (2019)

    Google Scholar 

  44. Song, J.-x., et al., Thermal and combustion behavior of Al-MnO2 nanothermite with poly(vinylidene fluoride -co- hexafluoropropylene) energetic binder. Defence Technology, 2020.

  45. J. Song et al., A comparative study of thermal kinetics and combustion performance of Al/CuO, Al/Fe2O3 and Al/MnO2 nanothermites. Vacuum 176, 109339 (2020)

    CAS  Google Scholar 

  46. W. He et al., Mussel-inspired polydopamine-directed crystal growth of core-shell n-Al@PDA@CuO metastable intermixed composites. Chem. Eng. J. 369, 1093–1101 (2019)

    CAS  Google Scholar 

  47. I. You et al., Enhancement of blood compatibility of poly (urethane) substrates by mussel-inspired adhesive heparin coating. Bioconjug. Chem. 22(7), 1264–1269 (2011)

    CAS  Google Scholar 

  48. X. Zhang et al., Mussel-inspired fabrication of functional materials and their environmental applications: progress and prospects. Applied Materials Today 7, 222–238 (2017)

    Google Scholar 

  49. J. Jiang et al., Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27(23), 14180–14187 (2011)

    CAS  Google Scholar 

  50. P. Molitor, V. Barron, T. Young, Surface treatment of titanium for adhesive bonding to polymer composites: a review. Int. J. Adhes. Adhes. 21(2), 129–136 (2001)

    CAS  Google Scholar 

  51. Y. Fang et al., Polydopamine nanotube for dual bio-inspired strong, tough, and flame retarding composites. Compos. B Eng. 197, 108184 (2020)

    CAS  Google Scholar 

  52. S. El Yakhlifi, V. Ball, Polydopamine as a stable and functional nanomaterial. Colloids Surf. B 186, 110719 (2020)

    Google Scholar 

  53. C. Lin et al., Controllable tuning of energetic crystals by bioinspired polydopamine. Energ. Mater. Front. 1, 59–66 (2020)

    Google Scholar 

  54. M.S. Zafar, et al. Polymer science: research advances, practical applications and educational aspects. (2015)

  55. X. Liu et al., Probe into metal-organic framework membranes fabricated via versatile polydopamine-assisted approach onto metal surfaces as anticorrosion coatings. Corros. Sci. 177, 108949 (2020)

    CAS  Google Scholar 

  56. H. Luo et al., Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Adv. 5(18), 13470–13477 (2015)

    CAS  Google Scholar 

  57. M. Liu et al., Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 8(38), 16819–16840 (2016)

    CAS  Google Scholar 

  58. S. Chen, Y. Cao, J. Feng, Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites. ACS Appl. Mater. Interfaces 6(1), 349–356 (2014)

    CAS  Google Scholar 

  59. K. Dashtian, S. Hajati, M. Ghaedi, l-Phenylalanine-imprinted polydopamine-coated CdS/CdSe n–n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring. Biosens. Bioelectron. 165, 112346 (2020)

    CAS  Google Scholar 

  60. Z. Xu, K. Miyazaki, T. Hori, Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning. Appl. Surf. Sci. 370, 243–251 (2016)

    CAS  Google Scholar 

  61. N. Bock et al., Polydopamine coating of uncrosslinked chitosan as an acellular scaffold for full thickness skin grafts. Carbohydr. Polym. 245, 116524 (2020)

    CAS  Google Scholar 

  62. Y. Chen et al., Reactivity adjustment from the contact extent between CuO and Al phases in nanothermites. Chem. Eng. J. 402, 126288 (2020)

    CAS  Google Scholar 

  63. Y. Kim et al., Efficient photocatalytic production of hydrogen by exploiting the polydopamine-semiconductor interface. Appl. Catal. B 280, 119423 (2021)

    CAS  Google Scholar 

  64. Y. Chen et al., Mussel-inspired polydopamine coating enhances the intracutaneous drug delivery from nanostructured lipid carriers dependently on a follicular pathway. Mol. Pharm. 17(4), 1215–1225 (2020)

    CAS  Google Scholar 

  65. K. Cheng et al., Study on the structure and properties of functionalized fibers with dopamine. Colloids Surf. A 582, 123846 (2019)

    Google Scholar 

  66. M. Liu et al., Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J. Mater. Chem. B 3(17), 3476–3482 (2015)

    CAS  Google Scholar 

  67. M. Deng et al., High catalytic activity of immobilized laccase on core–shell magnetic nanoparticles by dopamine self-polymerization. J. Mol. Catal. B 112, 15–24 (2015)

    CAS  Google Scholar 

  68. J. Wu et al., Functionalization of silk fibroin electrospun scaffolds via BMSC affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration. ACS Appl. Mater. Interfaces 11(9), 8878–8895 (2019)

    CAS  Google Scholar 

  69. G. Wang, Influence of polydopamine/polylactic acid coating on mechanical properties and cell behavior of 3D-printed calcium silicate scaffolds. Mater. Lett. 275, 128131 (2020)

    CAS  Google Scholar 

  70. S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym Mater. 28(5), 1793–1800 (2018)

    CAS  Google Scholar 

  71. M.A. Elsayed, M. Gobara, S. Elbasuney, Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment. J. Photochem. Photobiol. A 344, 121–133 (2017)

    CAS  Google Scholar 

  72. A.M. El-Khawaga et al., Promising antimicrobial and azo dye removal activities of citric acid-functionalized magnesium ferrite nanoparticles. J. Clust. Sci. (2021). https://doi.org/10.1007/s10876-020-01944-y

    Article  Google Scholar 

  73. S. Elbasuney et al., Ferric oxide colloid: novel nanocatalyst for heterocyclic nitramines. J. Mater. Sci. 32, 4185–4195 (2021)

    Google Scholar 

  74. X.-D. Lin et al., Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 43(1), 40–45 (2012)

    CAS  Google Scholar 

  75. S. Elbasuney et al., Novel (MnO2/Al) thermite colloid: an opportunity for energetic systems with enhanced performance. J. Mater. Sci. 31(23), 21399–21407 (2020)

    CAS  Google Scholar 

  76. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    CAS  Google Scholar 

  77. S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)

    CAS  Google Scholar 

  78. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    CAS  Google Scholar 

  79. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    CAS  Google Scholar 

  80. M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1–x)Fe2O4;(M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Google Scholar 

  81. A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    CAS  Google Scholar 

  82. M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci. 30, 1–12 (2019)

    Google Scholar 

  83. R.J. Gohari et al., Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335(1), 87–95 (2014)

    Google Scholar 

  84. J.-G. Wang et al., Incorporation of nanostructured manganese dioxide into carbon nanofibers and its electrochemical performance. Mater. Lett. 72, 18–21 (2012)

    CAS  Google Scholar 

  85. B.G.S. Raj et al., Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrason. Sonochem. 21(6), 1933–1938 (2014)

    Google Scholar 

  86. S. Zhu et al., Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Func. Mater. 15(3), 381–386 (2005)

    CAS  Google Scholar 

  87. H. Gao et al., The efficient biogeneration of Ag and NiO nanoparticles from VPLE and a study of the anti-diabetic properties of the extract. RSC Adv. 10(5), 3005–3012 (2020)

    CAS  Google Scholar 

  88. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of BaSnO3 nanostructures via a new simple surfactant-free route. J. Mater. Sci. 27(1), 425–435 (2016)

    CAS  Google Scholar 

  89. S. Zinatloo-Ajabshir et al., Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46(11), 17186–17196 (2020)

    CAS  Google Scholar 

  90. C. Mandilas et al., Synthesis of aluminium nanoparticles by arc plasma spray under atmospheric pressure. Mater. Sci. Eng. B 178(1), 22–30 (2013)

    CAS  Google Scholar 

  91. M. Paskevicius et al., Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2 kbar. J. Alloy. Compd. 481(1–2), 595–599 (2009)

    CAS  Google Scholar 

  92. B. Alinejad, K. Mahmoodi, A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. Int. J. Hydrogen Energy 34(19), 7934–7938 (2009)

    CAS  Google Scholar 

  93. M. Paskevicius et al., Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2kbar. J. Alloy. Compd. 481(1), 595–599 (2009)

    CAS  Google Scholar 

  94. A.I. El-Batal et al., Penicillium chrysogenum-mediated mycogenic synthesis of copper oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens. J. Clust. Sci. 31(1), 79–90 (2020)

    CAS  Google Scholar 

  95. G.S. El-Sayyad et al., Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens. Biol. Trace Elem. Res. 195(1), 323–342 (2020)

    CAS  Google Scholar 

  96. S. Elbasuney et al., Reduced graphene oxide: a novel black body emitter for advanced infrared decoy flares. J. Energ. Mater. 39(1), 100–112 (2020). https://doi.org/10.1080/07370652.2020.1762800

    Article  CAS  Google Scholar 

  97. S. Elbasuney et al., Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym Mater. 28(5), 1718–1727 (2018)

    CAS  Google Scholar 

  98. S. Elbasuney et al., Infrared spectra of customized magnesium/teflon/viton decoy flares. Combust. Explos. Shock Waves 55(5), 599–605 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt and ZEISS microscope team at Cairo, Egypt for their invaluable support of this study. Figures 1, 2, 4, and 11were created by Bio Render program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Yehia, M. & El-Sayyad, G.S. Bio-inspired metastable intermolecular nanothermite composite based on Manganese dioxide/Polydopamine/Aluminium. J Mater Sci: Mater Electron 32, 9158–9170 (2021). https://doi.org/10.1007/s10854-021-05582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05582-6

Navigation