Skip to main content
Log in

Synthesis, characterization, and temperature-dependent electronic properties of ZnO nanorods using CBD techniques

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-quality and partially oriented ZnO nanorod films were synthesized by chemical bath deposition on top of a ZnO sol–gel spin-coating seed layer deposited on glass substrates. Two different ratios (0.625 and 6.25) of hexamethylenetetramine to zinc acetate were considered for the synthesis of the ZnO nanorod films and their optical, structural and electronic properties were studied. The ZnO nanorod films showed the wurtzite structure with a crystallite size about 50–55 nm, a dislocation density in the range of 1015 lines-m−2 and a strain in the range of 10–3. Energy dispersive spectroscopy and photoluminescence measurements indicated the existence of oxygen vacancies in the films. The ZnO nanorod films showed a bandgap energy about 3.24 eV. From photoluminescence results, an intense ultraviolet excitonic emission band was observed in the films. The films resulted with a carrier concentration in the range of 1015 and 1016 cm−3. From impedance spectroscopy measurements, a noticeable temperature-dependent electronic conductivity was observed, related probably to the nanostructured morphology of the films. In both films it was observed that the electronic conductivity decreased in the intermediate temperature region with the increment of temperature, probably due to chemisorption or desorption phenomena. But the electronic conductivity in the low and the high-temperature regions obeyed the grain boundary carrier-trapping model with the increment of the temperature, showing in both regions an activation energy close to 0.6 eV, attributed to the appearance of trap states due to the chemisorption of oxygen at the grain boundaries of the ZnO nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ü. Ozgur, D. Hofstetter, H. Morkoç, Proc. IEEE (2010). https://doi.org/10.1109/JPROC.2010.2044550

    Article  Google Scholar 

  2. M. Scharrer, A. Yamilov, X. Wu, H. Cao, R.P.H. Chang, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2203939

    Article  Google Scholar 

  3. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morkq, J. Appl. Phys. (2005). https://doi.org/10.1063/1.1992666

    Article  Google Scholar 

  4. I. Gonzalez-Valls, M. Lira-Cantu, Energy Environ. Sci. (2009). https://doi.org/10.1039/B811536B

    Article  Google Scholar 

  5. M. Dinescu, P. Verardi, Appl. Surf. Sci. (1996). https://doi.org/10.1016/S0169-4332(97)80013-X

    Article  Google Scholar 

  6. P. Verardi, M. Dinescu, A. Andrei, Appl. Surf. Sci. (1996). https://doi.org/10.1016/0169-4332(95)00591-9

    Article  Google Scholar 

  7. K.L. Narasimhan, S.P. Pai, V.R. Palkar, R. Pinto, Thin Solid Films (1997). https://doi.org/10.1016/S0040-6090(96)09157-2

    Article  Google Scholar 

  8. H.S. Yoon, K.S. Lee, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim, Sol. Energy Mater. Sol. Cells (2008). https://doi.org/10.1016/j.solmat.2008.05.010

    Article  Google Scholar 

  9. H. Enoki, T. Nakayama, J. Echigoya, Phys. Status Solidi (1992). https://doi.org/10.1002/pssa.2211290116

    Article  Google Scholar 

  10. R. Wendt, K. Ellmer, Surf. Coat. Technol. (1997). https://doi.org/10.1016/S0257-8972(97)00036-4

    Article  Google Scholar 

  11. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, Sci. J. UOZ 5(1), 128 (2017). https://doi.org/10.25271/2017.5.1.313

    Article  Google Scholar 

  12. B.P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, Appl. Phys. Lett. (2004). https://doi.org/10.1063/1.1753061

    Article  Google Scholar 

  13. T.M. Barnes, J. Leaf, C. Fry, C.A. Wolden, J. Cryst. Growth (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.015

    Article  Google Scholar 

  14. J. Hu, R.G. Gordon, J. Appl. Phys. (1992). https://doi.org/10.1063/1.351309

    Article  Google Scholar 

  15. K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, J. Mater. Chem. (2004). https://doi.org/10.1039/B404784B

    Article  Google Scholar 

  16. G. Hodes, Chemical Solution Deposition of Semiconductor Films (CRC Press, Boca Raton, 2002), pp. 266–271

    Book  Google Scholar 

  17. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, Crystals 10, 386 (2020). https://doi.org/10.3390/cryst10050386

    Article  CAS  Google Scholar 

  18. L.L. Yang, Q.X. Zhao, M. Willander, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.08.002

    Article  Google Scholar 

  19. R. Pietruszka, B.S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, M. Godlewski, Energy Mater. Sol. Cells. (2015). https://doi.org/10.1016/j.solmat.2015.06.042

    Article  Google Scholar 

  20. G.C. Yi, C. Wang, W. Il Park, Semicond. Sci. Technol. (2005). https://doi.org/10.1088/0268-1242/20/4/003

    Article  Google Scholar 

  21. S.W. Kim, T. Kotani, M. Ueda, S. Fujita, S. Fujita, Appl. Phys. Lett. (2003). https://doi.org/10.1063/1.1622795

    Article  Google Scholar 

  22. W.L. Xu, M.J. Zheng, G.Q. Ding, W.Z. Shen, Chem. Phys. Lett. (2005). https://doi.org/10.1016/j.cplett.2005.05.105

    Article  Google Scholar 

  23. X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Appl. Phys. Lett. (2003). https://doi.org/10.1063/1.1587878

    Article  Google Scholar 

  24. C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, D. Schwen, Appl. Phys. Lett. (2004). https://doi.org/10.1063/1.1645319

    Article  Google Scholar 

  25. Y.B. Li, Y. Bando, T. Sato, K. Kurashima, Appl. Phys. Lett. (2002). https://doi.org/10.1063/1.1492008

    Article  Google Scholar 

  26. J. Angulo-Rocha, O. Velarde-Escobar, C. Yee-Rendón, G. Atondo-Rubio, R. Millan-Almaraz, E. Camarillo-García, M. García-Hipólito, F. Ramos-Brito, J. Lumin. (2017). https://doi.org/10.1016/j.jlumin.2017.01.026

    Article  Google Scholar 

  27. G.N. Panin, H.D. Cho, S.W. Lee, T.W. Kang, J. Korean Phys. Soc. (2014). https://doi.org/10.3938/jkps.64.1403

    Article  Google Scholar 

  28. S.J. An, G.C. Yi, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2786852

    Article  Google Scholar 

  29. S.W. Lee, H.D. Cho, G. Panin, T. Won Kang, Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3562608

    Article  Google Scholar 

  30. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, AIP Conf. Proc. 1875, 020004 (2017). https://doi.org/10.1063/1.4998358

    Article  CAS  Google Scholar 

  31. A. Fattah, S.M. Ahmed, N.M. Ahmed, Sci. J. Univ. Zakho 6(4), 160 (2018). https://doi.org/10.25271/sjuoz.2018.6.4.546]

    Article  Google Scholar 

  32. L. Znaidi, Mater. Sci. Eng. B (2010). https://doi.org/10.1016/j.mseb.2010.07.001

    Article  Google Scholar 

  33. J. Song, S. Lim, J. Phys. Chem. C (2007). https://doi.org/10.1021/jp0655017

    Article  Google Scholar 

  34. N.T. Son, J.-S. Noh, S. Park, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.04.107]

    Article  Google Scholar 

  35. S. Guillemin, E. Appert, H. Roussel, B. Doisneau, R. Parize, T. Boudou, G. Bremond, V. Consonni, J. Phys. Chem. C (2015). https://doi.org/10.1021/acs.jpcc.5b06180

    Article  Google Scholar 

  36. Y. Tao, M. Fu, A. Zhao, D. He, Y. Wang, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2009.09.020

    Article  Google Scholar 

  37. J.B. Cui, C.P. Daghlian, U.J. Gibson, R. Püsche, P. Geithner, L. Ley, J. Appl. Phys. (2005). https://doi.org/10.1063/1.1854206

    Article  Google Scholar 

  38. C. He, Z. Zheng, H. Tang, L. Zhao, F. Lu, J. Phys. Chem. C (2009). https://doi.org/10.1021/jp902523c

    Article  Google Scholar 

  39. S.Y. Liu, T. Chen, J. Wan, G.P. Ru, B.Z. Li, X.P. Qu, Appl. Phys. A (2009). https://doi.org/10.1007/s00339-008-4957-5

    Article  Google Scholar 

  40. K.L. Foo, U. Hashim, K. Muhammad, C.H. Voon, Nanoscale Res. Lett. (2014). https://doi.org/10.1186/1556-276X-9-429

    Article  Google Scholar 

  41. H. Zhang, X. Quan, S. Chen, H. Zhao, Appl. Phys. A (2007). https://doi.org/10.1007/s00339-007-4167-6

    Article  Google Scholar 

  42. J.W.P. Hsu, Z.R. Tian, N.C. Simmons, C.M. Matzke, J.A. Voigt, J. Liu, Nano Lett. (2005). https://doi.org/10.1021/nl048322e

    Article  Google Scholar 

  43. S. Fujihara, C. Sasaki, T. Kimura, Appl. Surf. Sci. (2001). https://doi.org/10.1016/S0169-4332(01)00367-1

    Article  Google Scholar 

  44. M.N.R. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley, Y. Sun, Thin Solid Films (2007). https://doi.org/10.1016/j.tsf.2007.03.122

    Article  Google Scholar 

  45. S.R. Morrison, Adv. Catal. (1955). https://doi.org/10.1016/S0360-0564(08)60529-5

    Article  Google Scholar 

  46. R.J.D. Tilley, Defects in Solids (Wiley, Hoboken, NJ, 2008), pp. 147–148

    Book  Google Scholar 

  47. A.F. Abdulrahman, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03995-3

    Article  Google Scholar 

  48. H. Félix-Quintero, J. Angulo-Rocha, S.H. Murrieta, A.J. Hernández, G.E. Camarillo, J.M.C. Flores, C. Alejo-Armenta, M. García-Hipolito, F. Ramos-Brito, J. Lumin. (2017). https://doi.org/10.1016/j.jlumin.2016.09.049

    Article  Google Scholar 

  49. P. Raghu, N. Srinatha, C.S. Naveen, H.M. Mahesh, B. Angadi, J. Alloys Compd. 694, 68–75 (2016). https://doi.org/10.1016/j.jallcom.2016.09.290

    Article  CAS  Google Scholar 

  50. G. Kortüm, Reflectance Spectroscopy (Springer, Heidelberg, 1969), pp. 170–216

    Book  Google Scholar 

  51. F. Ramos-Brito, C. Alejo-Armenta, M. García-Hipólito, E. Camarillo, A.J. Hernández, C. Falcony, H.S. Murrieta, J. Lumin. (2011). https://doi.org/10.1016/j.jlumin.2010.12.017

    Article  Google Scholar 

  52. S. Mandal, K. Sambasivarao, A. Dhar, S.K. Ray, J. Appl. Phys. (2009). https://doi.org/10.1063/1.3168489

    Article  Google Scholar 

  53. N. Gogurla, S. Bayan, P. Chakrabarty, S.K. Ray, J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2017.09.044

    Article  Google Scholar 

  54. P. Chakrabarty, M. Banik, N. Gogurla, S. Santra, S.K. Ray, R. Mukherjee, ACS Omega (2019). https://doi.org/10.1021/acsomega.9b01116

    Article  Google Scholar 

  55. R.A. Swalin, Thermodynamics of Solids, 2nd edn. (Wiley, Hoboken, 1972), pp. 335–341

    Google Scholar 

  56. S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films (1984). https://doi.org/10.1016/0040-6090(84)90376-6

    Article  Google Scholar 

  57. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. (1990). https://doi.org/10.1002/adma.19900020304

    Article  Google Scholar 

  58. S. Kim, J. Maier, Electrochem. Solid-State Lett. (2003). https://doi.org/10.1149/1.1613071

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional, México. We also wish to thank to Consejo Nacional de Ciencia y Tecnología, México, under Grant Number CB-2015/253342.

Funding

The authors would like to acknowledge the financial support from Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional, México, and to Consejo Nacional de Ciencia y Tecnología, México, Grant Number CB-2015/253342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aguilar-Frutis.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Rojas, C.A., Aguilar-Frutis, M., Ramos-Brito, F. et al. Synthesis, characterization, and temperature-dependent electronic properties of ZnO nanorods using CBD techniques. J Mater Sci: Mater Electron 32, 8944–8957 (2021). https://doi.org/10.1007/s10854-021-05565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05565-7

Navigation