Skip to main content
Log in

Growth, structural, morphological, opto-electrical and first-principle investigations of ZnMgS thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we report the chemical synthesis of Zn0.7Mg0.3S columnar nanorods onto a commercial glass slide. The synthesized films were used for further studies. Structural, morphological, optical, and electrical properties were analyzed via X-ray diffraction, FE-SEM, TEM, UV–Vis spectroscopy, and two-probe I–V characteristics, respectively. A stable hexagonal structure with the nanocrystalline size of the ZnMgS material has been confirmed from X-ray and TEM analysis and also structural parameters were determined. FE-SEM micrographs show the uniformity of the grown nanorods on the surface of the film; combined EDX spectra display the presence of Zn, Mg, and S. UV–Vis absorption spectra show a prominent peak at ~ 310 nm which confirms the blue emission spectra. The semiconducting nature of synthesized ZnMgS films was confirmed by the electrical study and the photosensing ability was examined. Finally, ZnMgS is a direct bandgap semiconductor which is confirmed from first-principle calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, UGC-DAE CSR Indore and IUAC, New Delhi.

References

  1. I.A. Buyanova, W.M. Chen, M.P. Ivill, R. Pate, D.P. Norton, S.J. Pearton, J.W. Dong, A. Osinsky, B. Hertog, A.M. Dabiran, P.P. Chow, Optical characterization of ZnMnO-based dilute magnetic semiconductor structures. J. Vac. Sci. Technol. 24, 259–262 (2006)

    Article  CAS  Google Scholar 

  2. M.A. Pietrzyk, M. Stachowicz, D. Jarosz, R. Minikayev, M. Zielinski, P. Dluzewski, A. Kozanecki, Properties of ZnO/ZnMgO nanostructures grown on r-plane Al2O3 substrates by molecular beam epitaxy. J. Alloy. Compd. 650, 256–261 (2015)

    Article  CAS  Google Scholar 

  3. H. Wang, H. Long, Z. Chen, X. Mo, S. Li, Z. Zhong, G. Fang, Fabrication and characterization of alternating-current-driven ZnO-based ultraviolet light-emitting diodes. Electron. Mater. Lett. 11, 664–669 (2015)

    Article  CAS  Google Scholar 

  4. M.-M. Fan, K.-W. Liu, X. Chen, Z.-Z. Zhang, B.-H. Li, H.-F. Zhao, D.-Z. Shen, Realization of cubic ZnMgO photodetectors for UVB applications. J. Mater. Chem. C 3, 313–317 (2015)

    Article  CAS  Google Scholar 

  5. H.J. Fan, Y. Yang, M. Zacharias, ZnO-based ternary compound nanotubes and nanowires. J. Mater. Chem. 19, 885–900 (2009)

    Article  CAS  Google Scholar 

  6. E. Omurzak, T. Mashimo, S. Sulaimankulova, S. Takebe, L. Chen, Z. Abdullaeva, C. Iwamoto, Y. Oishi, H. Ihara, H. Okudera, A. Yoshiasa, Wurtzite-type ZnS nanoparticles by pulsed electric discharge. Nanotechnology (2011). https://doi.org/10.1088/0957-4484/22/36/365602

    Article  Google Scholar 

  7. K. Ichino, K. Ueyama, M. Yamamoto, H. Kariya, H. Miyata, H. Misasa, M. Kitagawa, H. Kobayashi, High temperature growth of ZnS and ZnMgS by molecular beam epitaxy under high sulfur beam pressure. J. Appl. Phys. 87, 4249–4253 (2000)

    Article  CAS  Google Scholar 

  8. T. Mashimo, E. Omurzak, L. Chen, R. Inoue, C. Kawai, Effect of shock compression on wurtzite-type ZnMgS crystals. J. Appl. Phys. 10(1063/1), 3532045 (2011)

    Google Scholar 

  9. I. Khan, I. Ahmad, H.A.R. Aliabad, M. Maqbool, Effect of phase transition on the optoelectronic properties of Zn1-xMgxS. J. Appl. Phys. 10(1063/1), 4756040 (2012)

    Google Scholar 

  10. S. Kim, C.-S. Lee, S. Kim, R.B.V. Chalapathy, E.A. Al-Ammar, B.T. Ahn, Understanding the light soaking effect of ZnMgO buffer in CIGS solar cells. Phys. Chem. Chem. Phys. 17, 19222–19229 (2015)

    Article  CAS  Google Scholar 

  11. K.A. Prior, C. Bradford, I.A. Davidson, R.T. Moug, Metastable II-VI sulphides: growth, characterization and stability. J. Cryst. Growth 323, 114–121 (2011)

    Article  CAS  Google Scholar 

  12. A. Toda, T. Asano, K. Funato, F. Nakamura, Y. Mori, Epitaxial growth of ZnMgSSe on GaAs substrate by metalorganic chemical vapor deposition. J. Cryst. Growth 145, 537–540 (1994)

    Article  CAS  Google Scholar 

  13. C. Morhain, X. Tang, M. Teisseire-Doninelli, B. Lo, M. Laugt, J.M. Chauveau, B. Vinter, O. Tottereau, P. Vennegues, C. Deparis, G. Neu, Structural and electronic properties of ZnMgO/ZnO quantum wells. Superlattices Microstruct. 38, 455–463 (2005)

    Article  CAS  Google Scholar 

  14. A.S. Dive, N.P. Huse, K.P. Gattu, R. Sharma, Soft chemical growth of Zn 0.8 Mg 0.2 S one dimensional nanorod thin films for efficient visible light photosensor. Sens Actuators A 266, 36–45 (2017)

    Article  CAS  Google Scholar 

  15. A.S. Dive, K.P. Gattu, N.P. Huse, D.R. Upadhayay, D.M. Phase, R.B. Sharma, Single step chemical growth of ZnMgS nanorod thin film and its DFT study. Mater. Sci. Eng. 228, 91–95 (2018)

    Article  CAS  Google Scholar 

  16. A.S. Dive, N.P. Huse, K.P. Gattu, R.B. Birajdar, D.R. Upadhyay, R. Sharma, Theoretical and experimental investigations of intermediate bands in ZnS–Mg nanocrystalline thin film photosensor. J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-7393-5

    Article  Google Scholar 

  17. A. Dive, N. Huse, D. Upadhye, S. Bagul, K. Gattu, R. Sharma, Growth of nanocrystalline Zn0.75Mg0.25S thin film by solution growth technique and their characterization as a window layer for solar cell. Ferroelectrics 518, 1–8 (2017)

    Article  CAS  Google Scholar 

  18. L. Meng, J. Zhang, Q. Li, X. Hou, Enhancement of two-dimensional electron-gas properties by Zn polar ZnMgO/MgO/ZnO structure grown by radical-source laser molecular beam epitaxy. J. Nanomater. (2015). https://doi.org/10.1155/2015/694234

    Article  Google Scholar 

  19. A. Rivera, A. Mazady, M. Anwar, Co-axial core-shell ZnMgO/ZnO NWs. Solid-State Electron 104, 126–130 (2015)

    Article  CAS  Google Scholar 

  20. M.A. Pietrzyk, M. Stachowicz, A. Wierzbicka, A. Reszka, E. Przezdziecka, A. Kozanecki, Properties of ZnO single quantum wells in ZnMgO nanocolumns grown on Si (111). Opt. Mater. 42, 406–410 (2015)

    Article  CAS  Google Scholar 

  21. A. Santhamoorthy, P. Srinivasan, A. Krishnakumar, J.B.B. Rayappan, K.J. Babu, SILAR-deposited nanostructured ZnO thin films: effect of deposition cycles on surface properties. Bull. Mater. Sci. 44, 1–8 (2021)

    Article  CAS  Google Scholar 

  22. K. Ichino, N. Suzuki, H. Kariya, K. Ueyama, M. Kitagawa, H. Kobayashi, Optical properties of ZnS/ZnMgS strained-layer quantum wells. J. Cryst. Growth 214, 368–372 (2000)

    Article  Google Scholar 

  23. A.S. Dive, N.P. Huse, K.P. Gattu, R. Sharma, A high visible light ZnMgS nanorod thin film photosensor by solution growth technique. AIP Conf. Proc. 1832, 120007 (2017)

    Article  CAS  Google Scholar 

  24. M.A. Akram, S. Javed, M. Islam, M. Mujahid, A. Safdar, Arrays of CZTS sensitized ZnO/ZnS and ZnO/ZnSe core/shell nanorods for liquid junction nanowire solar cells. Sol. Energy Mater. Sol. Cells 146, 121–128 (2016)

    Article  CAS  Google Scholar 

  25. D.H. Wang, D.M. Huang, C.X. Jin, X.H. Liu, Z. Lin, J. Wang, X. Wang, Raman spectra of Zn1-xMgxSySe1-y quaternary alloys. J. Appl. Phys. 80, 1248–1250 (1996)

    Article  CAS  Google Scholar 

  26. N.P. Huse, A.S. Dive, K.P. Gattu, R. Sharma, An experimental and theoretical study on soft chemically grown CuS thin film for photosensor application. Mater. Sci. Semicond. Process. 67, 62–68 (2017)

    Article  CAS  Google Scholar 

  27. N.P. Huse, A.S. Dive, K.P. Gattu, R. Sharma, One step synthesis of kestarite Cu2ZnSnS4 thin film by simple and economic chemical bath deposition method. AIP Conf. Proc. 1832, 080082 (2017)

    Article  CAS  Google Scholar 

  28. A. Djelal, K. Chaibi, N. Tari, K. Zitouni, A. Kadri, Ab-initio DFT-FP-LAPW/TB_mBJ/LDA-GGA investigation of structural and electronic properties of Mg x Zn 1–x O alloys in würtzite rocksalt and zinc-blende phases. Superlattices Microstruct (2017). https://doi.org/10.1016/j.spmi.2017.04.041

    Article  Google Scholar 

  29. I.A. Imad Khan, H.A. Rahnamaye Aliabad, M. Maqbool, Effect of phase transition on the optoelectronic properties of Zn1−xMgxS. J. Appl. Phys. 112, 0731041–0731046 (2012)

    Google Scholar 

  30. F.C. Zhang, H.W. Cui, X.X. Ruan, W.H. Zhang, Study on Density Functional Theory of Zn1-xMgxO Alloy. Appl. Mech. Mater. 556–562, 177–180 (2014)

    Google Scholar 

  31. C. Feigl, S.P. Russo, A.S. Barnard, A comparative density functional theory investigation of the mechanical and energetic properties of ZnS. Mol. Simul. 37, 321–333 (2011)

    Article  CAS  Google Scholar 

  32. H. Lashgari, A. Boochani, A. Shekaari, S. Solaymani, E. Sartipi, R.T. Mendi, Electronic and optical properties of 2D graphene-like ZnS: DFT calculations. Appl. Surf. Sci. 369, 76–81 (2016)

    Article  CAS  Google Scholar 

  33. A.Z.M. Dadsetani, First principle investigations of the optical properties of Zn1−xMgxS, Zn1−xMgxSe and Zn1−xMgxTe ternary alloys. Int. J. Mod. Phys. B 28, 1450211–14502119 (2014)

    Article  CAS  Google Scholar 

  34. M.Y. Shahid, M. Asghar, H.M. Arbi, M. Zafar, S.Z. Ilyas, Role of magnesium in ZnS structure: Experimental and theoretical investigation. AIP Adv. 6, 025019 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The author ASD synthesized the thin films, characterized them and performed the theoretical calculation, JSK helped to analyze and writing of structural and optical results. RS guided for overall work and writing of DFT results.

Corresponding author

Correspondence to Avinash S. Dive.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dive, A.S., Kounsalye, J.S. & Sharma, R. Growth, structural, morphological, opto-electrical and first-principle investigations of ZnMgS thin films. J Mater Sci: Mater Electron 33, 18798–18806 (2022). https://doi.org/10.1007/s10854-022-08729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08729-1

Navigation