Skip to main content
Log in

Electrical properties of a metal-germanium-topological insulator (metal/n-Ge/p-Bi2Te3) heterostructure devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents topological insulator (TI) heterojunction Metal/\(n\)-Ge/Bi2Te3, by growing a thin TI film of Bi2Te3 on an \(n\)-type Germanium (Ge) substrate. The microstructure and morphology of the developed Bi2Te3 film are analyzed. The electrical behavior of the Metal/\(n\)-Ge/Bi2Te3 heterojunction is examined by current–voltage (IV) and capacitance–voltage (CV) measurements. The performance of the heterostructure was examined by depositing different metallic contacts. Metal contacts of aluminum (Al), silver (Ag), and platinum (Pt) were used, and they formed Schottky contact with Ge and an ohmic contact with Bi2Te3. Pt/\(n\)-Ge/Bi2Te3 heterostructure was found best in terms of rectification ratio \((RR)\)= 122.7, the figure of merit (\(FOM)\) = 49.5, and ideality factor \((n)\) = 7.33 with small series resistance (\({R}_{s})\). The space-charge limited current (SLSC) and ohmic conduction are the transport mechanisms that govern these heterojunctions at a different voltage, affecting its performance. The influence of \(n\)-Ge/\(p\)-Bi2Te3 junction on the performance of Metal/\(n\)-Ge/Bi2Te3 is analyzed. The experimental results are fitted by two-diode simulation and current density–voltage (JV) and local ideality factor—voltage nV plots of these heterojunctions are studied for the recombination current (\({J}_{02})\). This study is significant in terms of the electrical performance of the Ge-TI-based, heterojunction devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Yang, N. Huo, Y. Li, X. Jiang, T. Li, R. Li, F. Lu, C. Fan, B. Li, K. Nørgaard, Adv. Electron. Mater. 1, 1500267 (2015). https://doi.org/10.1002/aelm.201500267

    Article  CAS  Google Scholar 

  2. C.M. Palumbiny, J. Schlipf, A. Hexemer, C. Wang, P. Müller-Buschbaum, Adv. Electron. Mater. 2, 1500377 (2016). https://doi.org/10.1002/aelm.201500377

    Article  CAS  Google Scholar 

  3. H. Chandrasekar, T. Razzak, C. Wang, Z. Reyes, K. Majumdar, S. Rajan, Adv. Electron. Mater. 6, 2000074 (2020). https://doi.org/10.1002/aelm.202000074

    Article  CAS  Google Scholar 

  4. Y. Li, L. Huang, B. Li, X. Wang, Z. Zhou, J. Li, Z. Wei, ACS Nano 10, 8938 (2016). https://doi.org/10.1021/acsnano.6b04952

    Article  CAS  Google Scholar 

  5. J. Cao, Y. Zou, X. Gong, P. Gou, J. Qian, R. Qian, Z. An, Appl. Phys. Lett. 113, 61112 (2018). https://doi.org/10.1063/1.5039594

    Article  CAS  Google Scholar 

  6. J.W. Schuettauf, B. Niesen, L. Löfgren, M. Bonnet-Eymard, M. Stuckelberger, S. Hänni, M. Boccard, G. Bugnon, M. Despeisse, F.-J. Haug, Sol. Energy Mater. Sol. Cells 133, 163 (2015). https://doi.org/10.1016/j.solmat.2014.11.006

    Article  CAS  Google Scholar 

  7. Z. Khurelbaatar, Y.H. Kil, K.H. Shim, H. Cho, M.J. Kim, Y.T. Kim, C.J. Choi, J. Semicond. Technol. Sci. 15, 7 (2015). https://doi.org/10.5573/JSTS.2015.15.1.007

    Article  Google Scholar 

  8. R. Kumar, S.S. Kushvaha, M. Kumar, M.S. Kumar, G. Gupta, K. Kandpal, P. Kumar, Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-67531-3

    Article  CAS  Google Scholar 

  9. M.V. Durnev, S.A. Tarasenko, ArXiv Prepr. ArXiv1901.04181 (2019).

  10. S. Obregón, G. Colón, Appl. Catal. B Environ. 140, 299 (2013). https://doi.org/10.1016/j.apcatb.2013.04.014

    Article  CAS  Google Scholar 

  11. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Appl. Phys. Lett. 77, 250 (2000). https://doi.org/10.1063/1.126940

    Article  CAS  Google Scholar 

  12. M. Ye, Z. Zhao, Z. Hu, L. Liu, H. Ji, Z. Shen, T. Ma, Angew. Chem. Int. Ed. 56, 8407 (2017). https://doi.org/10.1002/anie.20161112

    Article  CAS  Google Scholar 

  13. Y. Cheng, H. Li, B. Liu, L. Jiang, M. Liu, H. Huang, J. Yang, J. He, J. Jiang, Small (2020). https://doi.org/10.1002/smll.202005217

    Article  Google Scholar 

  14. J. Yao, Z. Zheng, G. Yang, Adv. Funct. Mater. 27, 1701823 (2017). https://doi.org/10.1002/adfm.201701823

    Article  CAS  Google Scholar 

  15. R. Padma, G. Lee, J.S. Kang, S.C. Jun, J. Colloid Interface Sci. 550, 48 (2019). https://doi.org/10.1016/j.jcis.2019.04.061

    Article  CAS  Google Scholar 

  16. J. Hu, C. Wang, S. Qiu, Y. Zhao, E. Gu, L. Zeng, Y. Yang, C. Li, X. Liu, K. Forberich, Adv. Energy Mater. 10, 2000173 (2020). https://doi.org/10.1002/aenm.202000173

    Article  CAS  Google Scholar 

  17. Z. Lu, Y. Xu, Y. Yu, K. Xu, J. Mao, G. Xu, Y. Ma, D. Wu, J. Jie, Adv. Funct. Mater. 30, 1907951 (2020). https://doi.org/10.1002/adfm.201907951

    Article  CAS  Google Scholar 

  18. Z. Yue, X. Wang, M. Gu, Adv. Topol. Insul. (2019). https://doi.org/10.1002/9781119407317.ch2

    Article  Google Scholar 

  19. F. Ortmann, S. Roche, S.O. Valenzuela, Topological Insulators: Fundamentals and Perspectives. Topol. Insul. Fundam. Perspect (. Wiley, New York, 2015).

    Google Scholar 

  20. C. In, H. Choi, Adv. Opt. Mater. 8, 1801334 (2020). https://doi.org/10.1002/adom.201801334

    Article  CAS  Google Scholar 

  21. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007). https://doi.org/10.1126/science.1148047

    Article  CAS  Google Scholar 

  22. W. Zhou, B. Cai, S. Guo, S. Zhang, X. Hu, H. Qu, H. Zeng, Appl. Mater. Today 15, 163 (2019). https://doi.org/10.1016/j.apmt.2019.01.006

    Article  Google Scholar 

  23. Y. Wu, C. Li, X. Hu, Y. Ao, Y. Zhao, Q. Gong, Adv. Opt. Mater. 5, 1700357 (2017). https://doi.org/10.1002/adom.201700357

    Article  CAS  Google Scholar 

  24. J. Liu, T.H. Hsieh, P. Wei, W. Duan, J. Moodera, L. Fu, Nat. Mater. 13, 178 (2014). https://doi.org/10.1038/nmat3828

    Article  CAS  Google Scholar 

  25. S. Wiedmann, L.W. Molenkamp, Topological Insulators in Two Dimensions Topol. Insul. Fundam. Perspect (Wiley, New York, 2015).

    Google Scholar 

  26. H.B. Zhang, H. Li, J.M. Shao, S.W. Li, D.H. Bao, G.W. Yang, ACS Appl Mater. Interfaces 5, 11503 (2013). https://doi.org/10.1021/am403634u

    Article  CAS  Google Scholar 

  27. B.A. Bernevig, S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006). https://doi.org/10.1103/PhysRevLett.96.106802

    Article  CAS  Google Scholar 

  28. Y.P. Chen, Graphene and topological insulator based transistors: beyond computing applications. Device Res. Conf. (2012). https://doi.org/10.1109/DRC.2012.6257029

    Article  Google Scholar 

  29. H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, Renew. Sustain. Energy Rev. 82, 4159 (2018). https://doi.org/10.1016/j.rser.2017.10.112

    Article  CAS  Google Scholar 

  30. A. Ghasemi, Atomic structure of thin films and heterostructure of Bi2Te3 and Bi2Se3 topological insulators, Ph.D. Dissertation, University of York (2017) http://etheses.whiterose.ac.uk/18907/. Accessed 31 January 2021

  31. B. Ryu, J. Korean Phys. Soc. 72, 122 (2018). https://doi.org/10.3938/jkps.72.122

    Article  CAS  Google Scholar 

  32. F. Ahmad, R. Singh, P.K. Misra, N. Kumar, R. Kumar, P. Kumar, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6609-7

    Article  Google Scholar 

  33. P. Chaturvedi, S. Chouksey, D. Banerjee, S. Ganguly, D. Saha, Appl. Phys. Lett. 107, 192105 (2015). https://doi.org/10.1063/1.4935554

    Article  CAS  Google Scholar 

  34. P. Gao, L. Chen, B. Wu, Q. Zhang, C. Xue, C. Hou, Q. Sun, J. Wuhan Univ. Technol. Sci. Ed. 34, 781 (2019). https://doi.org/10.1007/s11595-019-2117-8

    Article  CAS  Google Scholar 

  35. R.S. Muller, T.I. Kamins, M. Chan, P.K. Ko, Device Electronics for Integrated Circuits, 3rd edn. (Wiley, New York, 1986).

    Google Scholar 

  36. S. Gupta, V. Moroz, L. Smith, Q. Lu, K.C. Saraswat, IEEE Trans. Electron Devices 61, 1222 (2014). https://doi.org/10.1109/TED.2014.2311129

    Article  CAS  Google Scholar 

  37. C. Claeys, E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Amsterdam, 2011).

    Google Scholar 

  38. H.M. Chang, A. Charnas, Y.M. Lin, D.Y. Peide, C.I. Wu, C.H. Wu, Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/s41598-017-16845-w

    Article  CAS  Google Scholar 

  39. R. Singh, F. Ahmad, K. Nazeer, R. Kumar, N. Kumar, A.K. Ojha, S.S. Kushvaha, P. Kumar, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08067-0

    Article  Google Scholar 

  40. A. Habanyama, Adv. Mater. Device Appl. Ger. (2018). https://doi.org/10.5772/intechopen.78692

    Article  Google Scholar 

  41. A. Thanailakis, D.C. Northrop, Solid. State. Electron. 16, 1383 (1973). https://doi.org/10.1016/0038-1101(73)90052-X

    Article  CAS  Google Scholar 

  42. Y. Zhou, M. Ogawa, X. Han, K.L. Wang, Appl. Phys. Lett. 93, 202105 (2008). https://doi.org/10.1063/1.3028343

    Article  CAS  Google Scholar 

  43. S.C. Baek, Y.-J. Seo, J.G. Oh, M.G. Albert Park, J.H. Bong, S.J. Yoon, M. Seo, S. Park, B.G. Park, S.H. Lee, Appl. Phys. Lett. 105, 73508 (2014). https://doi.org/10.1063/1.4893668

    Article  CAS  Google Scholar 

  44. A. Dimoulas, P. Tsipas, A. Sotiropoulos, E.K. Evangelou, Appl. Phys. Lett. 89, 252110 (2006). https://doi.org/10.1063/1.4893668

    Article  CAS  Google Scholar 

  45. F. Ahmad, S. Singh, S.K. Pundir, R. Kumar, K. Kandpal, P. Kumar, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08126-6

    Article  Google Scholar 

  46. S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2017).

    Book  Google Scholar 

  47. H. Xu, Y. Song, Q. Gong, W. Pan, X. Wu, S. Wang, Mod. Phys. Lett. B 29, 1550075 (2015). https://doi.org/10.1142/S021798491550075X

    Article  CAS  Google Scholar 

  48. S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, J.R. Meyer, Appl. Phys. Lett. 75, 1401 (1999). https://doi.org/10.1063/1.124707

    Article  CAS  Google Scholar 

  49. M.L. Lucia, J.L. Hernandez-Rojas, C. Leon, I. Mártil, Eur. J. Phys. 14, 86 (1993). https://doi.org/10.1088/0143-0807/14/2/009

    Article  Google Scholar 

  50. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006).

    Book  Google Scholar 

  51. F. Ahmad, K. Kandpal, N. Kumar, R. Kumar, P. Kumar, IEEE Trans. Electron Devices (2020). https://doi.org/10.1109/TED.2020.3029126

    Article  Google Scholar 

  52. Y. Zhang, J. Zhang, Z. Liu, S. Xu, K. Cheng, J. Ning, C. Zhang, L. Zhang, P. Ma, H. Zhou, IEEE Electron Device Lett. 41, 457 (2020). https://doi.org/10.1109/LED.2020.2967895

    Article  CAS  Google Scholar 

  53. I.T. Witting, T.C. Chasapis, F. Ricci, M. Peters, N.A. Heinz, G. Hautier, G.J. Snyder, Adv. Electron. Mater. 5, 1800904 (2019). https://doi.org/10.1002/aelm.201800904

    Article  CAS  Google Scholar 

  54. Z. Çaldıran, A.R. Deniz, Ş Aydoğan, A. Yesildag, D. Ekinci, Superlattices Microstruct. 56, 45 (2013). https://doi.org/10.1016/j.spmi.2012.12.004

    Article  CAS  Google Scholar 

  55. E. Kioupakis, M.L. Tiago, S.G. Louie, Phys. Rev. B 82, 245203 (2010). https://doi.org/10.1103/PhysRevB.82.245203

    Article  CAS  Google Scholar 

  56. M.L. Cohen, J. Vac. Sci. Technol. 16, 1135 (1979). https://doi.org/10.1103/10.1116/1.570176

    Article  CAS  Google Scholar 

  57. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, A.M. Dabiran, A.M. Wowchak, A.V. Osinsky, B. Cui, P.P. Chow, S.J. Pearton, Appl. Phys. Lett. 91, 232116 (2007). https://doi.org/10.1063/1.2823607

    Article  CAS  Google Scholar 

  58. Z.Q. Fang, B. Claflin, D.C. Look, D.S. Green, R. Vetury, J. Appl. Phys. 108, 63706 (2010). https://doi.org/10.1063/1.3488610

    Article  CAS  Google Scholar 

  59. A.K. Ranade, R.D. Mahyavanshi, P. Desai, M. Kato, M. Tanemura, G. Kalita, Appl. Phys. Lett. 114, 151102 (2019). https://doi.org/10.1063/1.5084190

    Article  CAS  Google Scholar 

  60. S. Suckow (2014) Manual: 2/3-Diode Fit. https://nanohub.org/resources/21424/download/Manual.pdf. Accessed: 31 December 2021

  61. O. Breitenstein, S. Rißland, Sol. Energy Mater. Sol. Cells 110, 77 (2013). https://doi.org/10.1016/j.solmat.2012.11.021

    Article  CAS  Google Scholar 

  62. O. Breitenstein, Sol. Energy Mater. Sol. Cells 95, 2933 (2011). https://doi.org/10.1016/j.solmat.2011.05.049

    Article  CAS  Google Scholar 

  63. O. Breitenstein, J. Bauer, P.P. Altermatt, K. Ramspeck, Solid State Phenom. 156–158, 1 (2009)

    Article  Google Scholar 

  64. D. Macdonald, A. Cuevas, Sol. Cells (1999). https://doi.org/10.1016/S0960-1481(98)00813-1

    Article  Google Scholar 

  65. K.R. McIntosh, Lumps, humps and bumps: three detrimental effects in the current–voltage curve of silicon solar cells, Ph.D. Dissertation, Centre for Photovoltaic Engineering. Australia.Univ. New South Wales, Aust. 171 (2001)

  66. D. Macdonald, A. Cuevas, Prog. Photovolt. Res. Appl. 8, 363 (2000). https://doi.org/10.1002/1099-159X(200007/08)8

    Article  CAS  Google Scholar 

  67. C.M. Smyth, R. Addou, S. McDonnell, C.L. Hinkle, R.M. Wallace, J. Phys. Chem. C 120, 14719 (2016). https://doi.org/10.1021/acs.jpcc.0c01646

    Article  CAS  Google Scholar 

  68. R.S. Ajimsha, K.A. Vanaja, M.K. Jayaraj, P. Misra, V.K. Dixit, L.M. Kukreja, Thin Solid Films 515, 7352 (2007). https://doi.org/10.1016/j.tsf.2007.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank DST, Govt. of India for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest from any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Kandpal, K. & Kumar, P. Electrical properties of a metal-germanium-topological insulator (metal/n-Ge/p-Bi2Te3) heterostructure devices. J Mater Sci: Mater Electron 32, 8106–8121 (2021). https://doi.org/10.1007/s10854-021-05533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05533-1

Navigation