Skip to main content
Log in

Fabrication of a pn Heterojunction Using Topological Insulator Bi2Te3–Si and Its Annealing Response

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A junction device has been fabricated by growing p-type Bi2Te3 topological insulator (TI) film on an n-type silicon (Si) substrate using a thermal evaporation technique. Annealing using different temperatures and durations was employed to improve the quality of the film, as confirmed by microstructural study using x-ray diffraction (XRD) analysis and atomic force microscopy (AFM). The pn diode characteristics of the junction devices were studied, and the effect of annealing investigated. An improved diode characteristic with good rectification ratio (RR) was observed for devices annealed for longer duration. Reduction in the leakage or reverse saturation current (\( I_{\rm{R}} \)) was observed with increase in the annealing temperature. The forward-bias current (\( I_{\rm{F}} \)) dropped in devices annealed above 400°C. The best results were observed for the sample device annealed at 450°C for 3 h, showing figure of merit (FOM) of 0.621 with RR ≈ 504 and \( I_{\rm{R}} \) = 0.25 μA. In terms of ideality factor, the sample device annealed at 550°C for 2 h was found to be the best with \( n \) = 6.5, RR ≈ 52.4, \( I_{\rm{R}} \) = 0.61 μA, and FOM = 0.358. The majority-carrier density \( \left( {N_{\rm{A}} } \right) \) in the p-Bi2Te3 film of the heterojunction was found to be on the order of 109/cm3 to 1011/cm3, quite close to its intrinsic carrier concentration. These results are significant for fundamental understanding of device applications of TI materials as well as future applications in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jalali and S. Fathpour, J. Lightwave Technol. 24, 4600 (2006).

    Article  CAS  Google Scholar 

  2. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  CAS  Google Scholar 

  3. A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. Van der Zant, N. Agrait, and G. Rubio-Bollinger, Adv. Mater. 24, 72 (2012).

    Article  Google Scholar 

  4. K.F. Mak, K.L. He, C. Lee, G.H. Lee, J. Hone, and T.F. Heinz, Nat. Mater. 12, 207 (2013).

    Article  CAS  Google Scholar 

  5. S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad, F.C. Chou, Y.T. Chen, and X.P.A. Gao, Nano Lett. 15, 3815 (2015).

    Article  CAS  Google Scholar 

  6. H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, and S. Im, Nano Lett. 12, 3695 (2012).

    Article  CAS  Google Scholar 

  7. M. Buscema, M. Barkelid, V. Zwiller, H.S.J. Van der Zant, G.A. Steele, and A. Castellanos-Gomez, Nano Lett. 13, 358 (2013).

    Article  CAS  Google Scholar 

  8. F.N. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839 (2009).

    Article  CAS  Google Scholar 

  9. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012).

    Article  CAS  Google Scholar 

  10. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  11. T. Mueller, F.N. Xia, and P. Avouris, Nat. Photon. 4, 297 (2010).

    Article  CAS  Google Scholar 

  12. F.N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).

    Article  CAS  Google Scholar 

  13. Z.Y. Yin, H. Li, H. Li, L. Jiang, Y.M. Shi, Y.H. Sun, G. Lu, Q. Zhang, X.D. Chen, and H. Zhang, ACS Nano 6, 74 (2012).

    Article  CAS  Google Scholar 

  14. W. Zhang, C.P. Chuu, J.K. Huang, C.H. Chen, M.L. Tsai, Y.H. Chang, C.T. Liang, Y.Z. Chen, Y.L. Chueh, J.H. He, M.Y. Chou, and L.J. Li, Sci. Rep. 4, 3826 (2014).

    Article  CAS  Google Scholar 

  15. C.H. Lee, G.H. Lee, A.M. Van der Zande, W.C. Chen, Y.L. Li, M.Y. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, and P. Kim, Nat. Nanotechnol. 9, 676 (2014).

    Article  CAS  Google Scholar 

  16. L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou, H. Wu, D.L. Feng, X.H. Chen, and Y.B. Zhang, Nat. Nanotechnol. 9, 372 (2014).

    Article  CAS  Google Scholar 

  17. Y.X. Deng, Z. Luo, N.J. Conrad, H. Liu, Y.J. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X.F. Xu, and P.D. Ye, ACS Nano 8, 8292 (2014).

    Article  CAS  Google Scholar 

  18. M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, and J.H. He, ACS Nano 8, 8317 (2014).

    Article  CAS  Google Scholar 

  19. H. Qiao, J. Yuan, Z.Q. Xu, C.Y. Chen, S.H. Lin, Y.S. Wang, J.C. Song, Y. Liu, Q. Khan, and H.Y. Hoh, ACS Nano 9, 1886 (2015).

    Article  CAS  Google Scholar 

  20. A. Pospischil, M.M. Furchi, and T. Mueller, Nat. Nanotechnol. 9, 257 (2014).

    Article  CAS  Google Scholar 

  21. D.J. Groenendijk, M. Buscema, G.A. Steele, S.M. de Vasconcellos, R. Bratschitsch, H.S.J. Van der Zant, and A. Castellanos-Gomez, Nano Lett. 14, 5846 (2014).

    Article  CAS  Google Scholar 

  22. H.B. Zhang, X.J. Zhang, C. Liu, S.T. Lee, and J.S. Jie, ACS Nano 10, 5113 (2016).

    Article  CAS  Google Scholar 

  23. O. Appel, T. Zilber, S. Kalabukhov, O. Beeri, and Y. Gelbstein, J. Mater. Chem. C3, 11653 (2015).

    Google Scholar 

  24. B. Dado, Y. Gelbstein, D. Mogilansky, V. Ezersky, and M.P. Dariel, J. Electron. Mater. 39, 2165 (2010).

    Article  CAS  Google Scholar 

  25. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. Stat. Sol. (RRL) 1, 232 (2007).

    Article  CAS  Google Scholar 

  26. E. Hazan, O. Ben-Yehuda, N. Madar, and Y. Gelbstein, Adv. Energy Mater. 5, 1500272 (2015).

    Article  Google Scholar 

  27. L.M. Goncalves, C. Couto, P. Alpuim, D.M. Rowe, and J.H. Correia, Sens. Actuators A 130, 131346 (2006).

    Google Scholar 

  28. Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, and Z.X. Shen, Science 325, 178 (2009).

    Article  CAS  Google Scholar 

  29. K. Wang, Y.W. Liu, W.Y. Wang, N. Meyer, L.H. Bao, L. He, M.R. Lang, Z.G. Chen, X.Y. Che, K. Post, J. Zou, D.N. Basov, K.L. Wang, and F.X. Xiu, Appl. Phys. Lett. 103, 031605 (2013).

    Article  Google Scholar 

  30. L. Fu, C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  31. J.E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).

    Article  Google Scholar 

  32. G.A. Thomas, D.H. Rapkine, R.B. Van Dove, L.F. Mattheiss, W.A. Sunder, L.F. Schneemeyer, and J.V. Waszczak, Phys. Rev. B 46, 1553 (1992).

    Article  CAS  Google Scholar 

  33. Y.H. Lin, S.F. Lin, Y.C. Chi, C.L. Wu, C.H. Cheng, W.H. Tseng, J.H. He, C.I. Wu, C.K. Lee, and G.R. Lin, ACS Photonics 2, 481 (2015).

    Article  CAS  Google Scholar 

  34. C.Y. Hsu, D.H. Lien, S.Y. Lu, C.Y. Chen, C.F. Kang, Y.L. Chueh, W.K. Hsu, and J.H. He, ACS Nano 6, 6687 (2012).

    Article  CAS  Google Scholar 

  35. L. Li, P.S. Lee, C.Y. Yan, T.Y. Zhai, X.S. Fang, M.Y. Liao, Y. Koide, Y. Bando, and D. Golberg, Adv. Mater. 22, 5145 (2010).

    Article  CAS  Google Scholar 

  36. H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics, Chapter 19, ed. D.M. Rowe (Boca Raton: CRC Press, 1995)

    Google Scholar 

  37. J.D. Yao, J.M. Shao, Y.X. Wang, Z.R. Zhao, and G.W. Yang, Nanoscale 7, 12535 (2015).

    Article  CAS  Google Scholar 

  38. Z. Wang, M. Li, L. Yang, Z. Zhang, and X.P.A. Gao, Nano Res. 10, 1872 (2016).

    Article  Google Scholar 

  39. K. Singkaselit, A. Sakulkalavek, and R. Sakdanuphab. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035002 (2017).

    Article  Google Scholar 

  40. D.H. Kim and G.H. Lee, Mater. Sci. Eng. B 131, 106 (2006).

    Article  CAS  Google Scholar 

  41. O. Madelung, U. Rössle, and M. Schulz (ed.), (Springer Materials, 41C (1998). https://materials.springer.com/lb/docs/sm_lbs_978-3-540-31360-1_967. Accessed 23 July 2018.

  42. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  CAS  Google Scholar 

  43. N.W. Singh and A.K. Narula, Appl. Phys. Lett. 71, 2845 (1997).

    Article  CAS  Google Scholar 

  44. R.S. Ajimsha, K.A. Vanaja, M.K. Jayaraj, P. Misra, V.K. Dixit, and L.M. Kukreja, Thin Solid Films 515, 7352 (2007).

    Article  CAS  Google Scholar 

  45. B.G. Streetman and S. Banerjee, Solid State Electronic Devices, 5th ed. (London: Pearson Education, 2006), pp. 190–208.

    Google Scholar 

  46. W. Nolting, M.Sc. thesis, University of New Orleans Theses and Dissertations, UNO (2010).

  47. M. Hajlaoui, E. Papalazarou, J. Mauchain, L. Perfetti, A. Taleb-Ibrahimi, F. Navarin, M. Monteverde, P. Auban-Senzier, C.R. Pasquier, N. Moisan, D. Boschetto, M. Neupane, M.Z. Hasan, T. Durakiewicz, Z. Jiang, Y. Xu, I. Miotkowski, Y.P. Chen, S. Jia, H.W. Ji, R.J. Cava, and M. Marsi, Nat. Commun. 5, 3003 (2014).

    Article  CAS  Google Scholar 

  48. H. Lee, Electronic (Band) Structures for Bismuth Telluride (Western Michigan University, USA, 2015). http://homepages.wmich.edu/∼leehs/ME695/Electronic%20Structures%20for%20Bismuth%20Telluride.pdf. Accessed 23 July 2018.

  49. CODATA internationally recommended values (National Institute of Standards and Technology (NIST), 2015). https://physics.nist.gov/cuu/Constants/bibliography.html. Accessed 23 July 2018.

  50. S.M. Sze and K.N. Kwok, Physics of Semiconductor Devices (New York: Wiley, 2007).

    Google Scholar 

  51. L. Shanghua, S.M.A. Hesham, J. Zhou, M.S. Toprak, M. Muhammed, D. Platzek, P. Ziolkowski, and E. Müller, Chem. Mater. 20, 4403 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank DST, Govt. of India for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizan Ahmad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Singh, R., Misra, P.K. et al. Fabrication of a pn Heterojunction Using Topological Insulator Bi2Te3–Si and Its Annealing Response. J. Electron. Mater. 47, 6972–6983 (2018). https://doi.org/10.1007/s11664-018-6609-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6609-7

Keywords

Navigation